FFmpeg  4.3.8
avf_showspectrum.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012-2013 Clément Bœsch
3  * Copyright (c) 2013 Rudolf Polzer <divverent@xonotic.org>
4  * Copyright (c) 2015 Paul B Mahol
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * audio to spectrum (video) transmedia filter, based on ffplay rdft showmode
26  * (by Michael Niedermayer) and lavfi/avf_showwaves (by Stefano Sabatini).
27  */
28 
29 #include <math.h>
30 
31 #include "libavcodec/avfft.h"
32 #include "libavutil/audio_fifo.h"
33 #include "libavutil/avassert.h"
34 #include "libavutil/avstring.h"
36 #include "libavutil/opt.h"
37 #include "libavutil/parseutils.h"
39 #include "audio.h"
40 #include "video.h"
41 #include "avfilter.h"
42 #include "filters.h"
43 #include "internal.h"
44 #include "window_func.h"
45 
53 
54 typedef struct ShowSpectrumContext {
55  const AVClass *class;
56  int w, h;
57  char *rate_str;
65  int sliding; ///< 1 if sliding mode, 0 otherwise
66  int mode; ///< channel display mode
67  int color_mode; ///< display color scheme
68  int scale;
69  int fscale;
70  float saturation; ///< color saturation multiplier
71  float rotation; ///< color rotation
72  int start, stop; ///< zoom mode
73  int data;
74  int xpos; ///< x position (current column)
75  FFTContext **fft; ///< Fast Fourier Transform context
76  FFTContext **ifft; ///< Inverse Fast Fourier Transform context
77  int fft_bits; ///< number of bits (FFT window size = 1<<fft_bits)
78  FFTComplex **fft_data; ///< bins holder for each (displayed) channels
79  FFTComplex **fft_scratch; ///< scratch buffers
80  float *window_func_lut; ///< Window function LUT
81  float **magnitudes;
82  float **phases;
83  int win_func;
84  int win_size;
85  int buf_size;
86  double win_scale;
87  float overlap;
88  float gain;
89  int consumed;
90  int hop_size;
91  float *combine_buffer; ///< color combining buffer (3 * h items)
92  float **color_buffer; ///< color buffer (3 * h * ch items)
96  int old_len;
98  int legend;
100  int (*plot_channel)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
102 
103 #define OFFSET(x) offsetof(ShowSpectrumContext, x)
104 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
105 
106 static const AVOption showspectrum_options[] = {
107  { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
108  { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
109  { "slide", "set sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_SLIDES-1, FLAGS, "slide" },
110  { "replace", "replace old columns with new", 0, AV_OPT_TYPE_CONST, {.i64=REPLACE}, 0, 0, FLAGS, "slide" },
111  { "scroll", "scroll from right to left", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL}, 0, 0, FLAGS, "slide" },
112  { "fullframe", "return full frames", 0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, FLAGS, "slide" },
113  { "rscroll", "scroll from left to right", 0, AV_OPT_TYPE_CONST, {.i64=RSCROLL}, 0, 0, FLAGS, "slide" },
114  { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, COMBINED, NB_MODES-1, FLAGS, "mode" },
115  { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
116  { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
117  { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=CHANNEL}, CHANNEL, NB_CLMODES-1, FLAGS, "color" },
118  { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, "color" },
119  { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
120  { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, "color" },
121  { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, "color" },
122  { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, "color" },
123  { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, "color" },
124  { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, "color" },
125  { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, "color" },
126  { "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, "color" },
127  { "magma", "magma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MAGMA}, 0, 0, FLAGS, "color" },
128  { "green", "green based coloring", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, FLAGS, "color" },
129  { "viridis", "viridis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS}, 0, 0, FLAGS, "color" },
130  { "plasma", "plasma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=PLASMA}, 0, 0, FLAGS, "color" },
131  { "cividis", "cividis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS}, 0, 0, FLAGS, "color" },
132  { "terrain", "terrain based coloring", 0, AV_OPT_TYPE_CONST, {.i64=TERRAIN}, 0, 0, FLAGS, "color" },
133  { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=SQRT}, LINEAR, NB_SCALES-1, FLAGS, "scale" },
134  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
135  { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, "scale" },
136  { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, "scale" },
137  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" },
138  { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
139  { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" },
140  { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
141  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" },
142  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, "fscale" },
143  { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
144  { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
145  { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" },
146  { "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
147  { "hann", "Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
148  { "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
149  { "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" },
150  { "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
151  { "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" },
152  { "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" },
153  { "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" },
154  { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
155  { "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" },
156  { "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" },
157  { "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" },
158  { "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" },
159  { "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" },
160  { "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" },
161  { "dolph", "Dolph-Chebyshev", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH}, 0, 0, FLAGS, "win_func" },
162  { "cauchy", "Cauchy", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY}, 0, 0, FLAGS, "win_func" },
163  { "parzen", "Parzen", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN}, 0, 0, FLAGS, "win_func" },
164  { "poisson", "Poisson", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON}, 0, 0, FLAGS, "win_func" },
165  { "bohman", "Bohman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN}, 0, 0, FLAGS, "win_func" },
166  { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
167  { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, "orientation" },
168  { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
169  { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl = 0}, 0, 1, FLAGS },
170  { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
171  { "data", "set data mode", OFFSET(data), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_DMODES-1, FLAGS, "data" },
172  { "magnitude", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_MAGNITUDE}, 0, 0, FLAGS, "data" },
173  { "phase", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_PHASE}, 0, 0, FLAGS, "data" },
174  { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
175  { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
176  { "stop", "stop frequency", OFFSET(stop), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
177  { "fps", "set video rate", OFFSET(rate_str), AV_OPT_TYPE_STRING, {.str = "auto"}, 0, 0, FLAGS },
178  { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
179  { NULL }
180 };
181 
182 AVFILTER_DEFINE_CLASS(showspectrum);
183 
184 static const struct ColorTable {
185  float a, y, u, v;
186 } color_table[][8] = {
187  [INTENSITY] = {
188  { 0, 0, 0, 0 },
189  { 0.13, .03587126228984074, .1573300977624594, -.02548747583751842 },
190  { 0.30, .18572281794568020, .1772436246393981, .17475554840414750 },
191  { 0.60, .28184980583656130, -.1593064119945782, .47132074554608920 },
192  { 0.73, .65830621175547810, -.3716070802232764, .24352759331252930 },
193  { 0.78, .76318535758242900, -.4307467689263783, .16866496622310430 },
194  { 0.91, .95336363636363640, -.2045454545454546, .03313636363636363 },
195  { 1, 1, 0, 0 }},
196  [RAINBOW] = {
197  { 0, 0, 0, 0 },
198  { 0.13, 44/256., (189-128)/256., (138-128)/256. },
199  { 0.25, 29/256., (186-128)/256., (119-128)/256. },
200  { 0.38, 119/256., (194-128)/256., (53-128)/256. },
201  { 0.60, 111/256., (73-128)/256., (59-128)/256. },
202  { 0.73, 205/256., (19-128)/256., (149-128)/256. },
203  { 0.86, 135/256., (83-128)/256., (200-128)/256. },
204  { 1, 73/256., (95-128)/256., (225-128)/256. }},
205  [MORELAND] = {
206  { 0, 44/256., (181-128)/256., (112-128)/256. },
207  { 0.13, 126/256., (177-128)/256., (106-128)/256. },
208  { 0.25, 164/256., (163-128)/256., (109-128)/256. },
209  { 0.38, 200/256., (140-128)/256., (120-128)/256. },
210  { 0.60, 201/256., (117-128)/256., (141-128)/256. },
211  { 0.73, 177/256., (103-128)/256., (165-128)/256. },
212  { 0.86, 136/256., (100-128)/256., (183-128)/256. },
213  { 1, 68/256., (117-128)/256., (203-128)/256. }},
214  [NEBULAE] = {
215  { 0, 10/256., (134-128)/256., (132-128)/256. },
216  { 0.23, 21/256., (137-128)/256., (130-128)/256. },
217  { 0.45, 35/256., (134-128)/256., (134-128)/256. },
218  { 0.57, 51/256., (130-128)/256., (139-128)/256. },
219  { 0.67, 104/256., (116-128)/256., (162-128)/256. },
220  { 0.77, 120/256., (105-128)/256., (188-128)/256. },
221  { 0.87, 140/256., (105-128)/256., (188-128)/256. },
222  { 1, 1, 0, 0 }},
223  [FIRE] = {
224  { 0, 0, 0, 0 },
225  { 0.23, 44/256., (132-128)/256., (127-128)/256. },
226  { 0.45, 62/256., (116-128)/256., (140-128)/256. },
227  { 0.57, 75/256., (105-128)/256., (152-128)/256. },
228  { 0.67, 95/256., (91-128)/256., (166-128)/256. },
229  { 0.77, 126/256., (74-128)/256., (172-128)/256. },
230  { 0.87, 164/256., (73-128)/256., (162-128)/256. },
231  { 1, 1, 0, 0 }},
232  [FIERY] = {
233  { 0, 0, 0, 0 },
234  { 0.23, 36/256., (116-128)/256., (163-128)/256. },
235  { 0.45, 52/256., (102-128)/256., (200-128)/256. },
236  { 0.57, 116/256., (84-128)/256., (196-128)/256. },
237  { 0.67, 157/256., (67-128)/256., (181-128)/256. },
238  { 0.77, 193/256., (40-128)/256., (155-128)/256. },
239  { 0.87, 221/256., (101-128)/256., (134-128)/256. },
240  { 1, 1, 0, 0 }},
241  [FRUIT] = {
242  { 0, 0, 0, 0 },
243  { 0.20, 29/256., (136-128)/256., (119-128)/256. },
244  { 0.30, 60/256., (119-128)/256., (90-128)/256. },
245  { 0.40, 85/256., (91-128)/256., (85-128)/256. },
246  { 0.50, 116/256., (70-128)/256., (105-128)/256. },
247  { 0.60, 151/256., (50-128)/256., (146-128)/256. },
248  { 0.70, 191/256., (63-128)/256., (178-128)/256. },
249  { 1, 98/256., (80-128)/256., (221-128)/256. }},
250  [COOL] = {
251  { 0, 0, 0, 0 },
252  { .15, 0, .5, -.5 },
253  { 1, 1, -.5, .5 }},
254  [MAGMA] = {
255  { 0, 0, 0, 0 },
256  { 0.10, 23/256., (175-128)/256., (120-128)/256. },
257  { 0.23, 43/256., (158-128)/256., (144-128)/256. },
258  { 0.35, 85/256., (138-128)/256., (179-128)/256. },
259  { 0.48, 96/256., (128-128)/256., (189-128)/256. },
260  { 0.64, 128/256., (103-128)/256., (214-128)/256. },
261  { 0.92, 205/256., (80-128)/256., (152-128)/256. },
262  { 1, 1, 0, 0 }},
263  [GREEN] = {
264  { 0, 0, 0, 0 },
265  { .75, .5, 0, -.5 },
266  { 1, 1, 0, 0 }},
267  [VIRIDIS] = {
268  { 0, 0, 0, 0 },
269  { 0.10, 0x39/255., (0x9D -128)/255., (0x8F -128)/255. },
270  { 0.23, 0x5C/255., (0x9A -128)/255., (0x68 -128)/255. },
271  { 0.35, 0x69/255., (0x93 -128)/255., (0x57 -128)/255. },
272  { 0.48, 0x76/255., (0x88 -128)/255., (0x4B -128)/255. },
273  { 0.64, 0x8A/255., (0x72 -128)/255., (0x4F -128)/255. },
274  { 0.80, 0xA3/255., (0x50 -128)/255., (0x66 -128)/255. },
275  { 1, 0xCC/255., (0x2F -128)/255., (0x87 -128)/255. }},
276  [PLASMA] = {
277  { 0, 0, 0, 0 },
278  { 0.10, 0x27/255., (0xC2 -128)/255., (0x82 -128)/255. },
279  { 0.58, 0x5B/255., (0x9A -128)/255., (0xAE -128)/255. },
280  { 0.70, 0x89/255., (0x44 -128)/255., (0xAB -128)/255. },
281  { 0.80, 0xB4/255., (0x2B -128)/255., (0x9E -128)/255. },
282  { 0.91, 0xD2/255., (0x38 -128)/255., (0x92 -128)/255. },
283  { 1, 1, 0, 0. }},
284  [CIVIDIS] = {
285  { 0, 0, 0, 0 },
286  { 0.20, 0x28/255., (0x98 -128)/255., (0x6F -128)/255. },
287  { 0.50, 0x48/255., (0x95 -128)/255., (0x74 -128)/255. },
288  { 0.63, 0x69/255., (0x84 -128)/255., (0x7F -128)/255. },
289  { 0.76, 0x89/255., (0x75 -128)/255., (0x84 -128)/255. },
290  { 0.90, 0xCE/255., (0x35 -128)/255., (0x95 -128)/255. },
291  { 1, 1, 0, 0. }},
292  [TERRAIN] = {
293  { 0, 0, 0, 0 },
294  { 0.15, 0, .5, 0 },
295  { 0.60, 1, -.5, -.5 },
296  { 0.85, 1, -.5, .5 },
297  { 1, 1, 0, 0 }},
298 };
299 
301 {
302  ShowSpectrumContext *s = ctx->priv;
303  int i;
304 
306  if (s->fft) {
307  for (i = 0; i < s->nb_display_channels; i++)
308  av_fft_end(s->fft[i]);
309  }
310  av_freep(&s->fft);
311  if (s->ifft) {
312  for (i = 0; i < s->nb_display_channels; i++)
313  av_fft_end(s->ifft[i]);
314  }
315  av_freep(&s->ifft);
316  if (s->fft_data) {
317  for (i = 0; i < s->nb_display_channels; i++)
318  av_freep(&s->fft_data[i]);
319  }
320  av_freep(&s->fft_data);
321  if (s->fft_scratch) {
322  for (i = 0; i < s->nb_display_channels; i++)
323  av_freep(&s->fft_scratch[i]);
324  }
325  av_freep(&s->fft_scratch);
326  if (s->color_buffer) {
327  for (i = 0; i < s->nb_display_channels; i++)
328  av_freep(&s->color_buffer[i]);
329  }
330  av_freep(&s->color_buffer);
332  if (s->magnitudes) {
333  for (i = 0; i < s->nb_display_channels; i++)
334  av_freep(&s->magnitudes[i]);
335  }
336  av_freep(&s->magnitudes);
339  if (s->phases) {
340  for (i = 0; i < s->nb_display_channels; i++)
341  av_freep(&s->phases[i]);
342  }
343  av_freep(&s->phases);
344 }
345 
347 {
350  AVFilterLink *inlink = ctx->inputs[0];
351  AVFilterLink *outlink = ctx->outputs[0];
354  int ret;
355 
356  /* set input audio formats */
357  formats = ff_make_format_list(sample_fmts);
358  if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0)
359  return ret;
360 
361  layouts = ff_all_channel_layouts();
362  if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0)
363  return ret;
364 
365  formats = ff_all_samplerates();
366  if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0)
367  return ret;
368 
369  /* set output video format */
370  formats = ff_make_format_list(pix_fmts);
371  if ((ret = ff_formats_ref(formats, &outlink->in_formats)) < 0)
372  return ret;
373 
374  return 0;
375 }
376 
377 static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
378 {
379  ShowSpectrumContext *s = ctx->priv;
380  AVFilterLink *inlink = ctx->inputs[0];
381  const float *window_func_lut = s->window_func_lut;
382  AVFrame *fin = arg;
383  const int ch = jobnr;
384  int n;
385 
386  /* fill FFT input with the number of samples available */
387  const float *p = (float *)fin->extended_data[ch];
388 
389  for (n = 0; n < s->win_size; n++) {
390  s->fft_data[ch][n].re = p[n] * window_func_lut[n];
391  s->fft_data[ch][n].im = 0;
392  }
393 
394  if (s->stop) {
395  float theta, phi, psi, a, b, S, c;
396  FFTComplex *g = s->fft_data[ch];
397  FFTComplex *h = s->fft_scratch[ch];
398  int L = s->buf_size;
399  int N = s->win_size;
400  int M = s->win_size / 2;
401 
402  phi = 2.f * M_PI * (s->stop - s->start) / (float)inlink->sample_rate / (M - 1);
403  theta = 2.f * M_PI * s->start / (float)inlink->sample_rate;
404 
405  for (int n = 0; n < M; n++) {
406  h[n].re = cosf(n * n / 2.f * phi);
407  h[n].im = sinf(n * n / 2.f * phi);
408  }
409 
410  for (int n = M; n < L; n++) {
411  h[n].re = 0.f;
412  h[n].im = 0.f;
413  }
414 
415  for (int n = L - N; n < L; n++) {
416  h[n].re = cosf((L - n) * (L - n) / 2.f * phi);
417  h[n].im = sinf((L - n) * (L - n) / 2.f * phi);
418  }
419 
420  for (int n = 0; n < N; n++) {
421  g[n].re = s->fft_data[ch][n].re;
422  g[n].im = s->fft_data[ch][n].im;
423  }
424 
425  for (int n = N; n < L; n++) {
426  g[n].re = 0.f;
427  g[n].im = 0.f;
428  }
429 
430  for (int n = 0; n < N; n++) {
431  psi = n * theta + n * n / 2.f * phi;
432  c = cosf(psi);
433  S = -sinf(psi);
434  a = c * g[n].re - S * g[n].im;
435  b = S * g[n].re + c * g[n].im;
436  g[n].re = a;
437  g[n].im = b;
438  }
439 
440  av_fft_permute(s->fft[ch], h);
441  av_fft_calc(s->fft[ch], h);
442 
443  av_fft_permute(s->fft[ch], g);
444  av_fft_calc(s->fft[ch], g);
445 
446  for (int n = 0; n < L; n++) {
447  c = g[n].re;
448  S = g[n].im;
449  a = c * h[n].re - S * h[n].im;
450  b = S * h[n].re + c * h[n].im;
451 
452  g[n].re = a / L;
453  g[n].im = b / L;
454  }
455 
456  av_fft_permute(s->ifft[ch], g);
457  av_fft_calc(s->ifft[ch], g);
458 
459  for (int k = 0; k < M; k++) {
460  psi = k * k / 2.f * phi;
461  c = cosf(psi);
462  S = -sinf(psi);
463  a = c * g[k].re - S * g[k].im;
464  b = S * g[k].re + c * g[k].im;
465  s->fft_data[ch][k].re = a;
466  s->fft_data[ch][k].im = b;
467  }
468  } else {
469  /* run FFT on each samples set */
470  av_fft_permute(s->fft[ch], s->fft_data[ch]);
471  av_fft_calc(s->fft[ch], s->fft_data[ch]);
472  }
473 
474  return 0;
475 }
476 
477 static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o)
478 {
479  const uint8_t *font;
480  int font_height;
481  int i;
482 
483  font = avpriv_cga_font, font_height = 8;
484 
485  for (i = 0; txt[i]; i++) {
486  int char_y, mask;
487 
488  if (o) {
489  for (char_y = font_height - 1; char_y >= 0; char_y--) {
490  uint8_t *p = pic->data[0] + (y + i * 10) * pic->linesize[0] + x;
491  for (mask = 0x80; mask; mask >>= 1) {
492  if (font[txt[i] * font_height + font_height - 1 - char_y] & mask)
493  p[char_y] = ~p[char_y];
494  p += pic->linesize[0];
495  }
496  }
497  } else {
498  uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8);
499  for (char_y = 0; char_y < font_height; char_y++) {
500  for (mask = 0x80; mask; mask >>= 1) {
501  if (font[txt[i] * font_height + char_y] & mask)
502  *p = ~(*p);
503  p++;
504  }
505  p += pic->linesize[0] - 8;
506  }
507  }
508  }
509 }
510 
511 static void color_range(ShowSpectrumContext *s, int ch,
512  float *yf, float *uf, float *vf)
513 {
514  switch (s->mode) {
515  case COMBINED:
516  // reduce range by channel count
517  *yf = 256.0f / s->nb_display_channels;
518  switch (s->color_mode) {
519  case RAINBOW:
520  case MORELAND:
521  case NEBULAE:
522  case FIRE:
523  case FIERY:
524  case FRUIT:
525  case COOL:
526  case GREEN:
527  case VIRIDIS:
528  case PLASMA:
529  case CIVIDIS:
530  case TERRAIN:
531  case MAGMA:
532  case INTENSITY:
533  *uf = *yf;
534  *vf = *yf;
535  break;
536  case CHANNEL:
537  /* adjust saturation for mixed UV coloring */
538  /* this factor is correct for infinite channels, an approximation otherwise */
539  *uf = *yf * M_PI;
540  *vf = *yf * M_PI;
541  break;
542  default:
543  av_assert0(0);
544  }
545  break;
546  case SEPARATE:
547  // full range
548  *yf = 256.0f;
549  *uf = 256.0f;
550  *vf = 256.0f;
551  break;
552  default:
553  av_assert0(0);
554  }
555 
556  if (s->color_mode == CHANNEL) {
557  if (s->nb_display_channels > 1) {
558  *uf *= 0.5f * sinf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
559  *vf *= 0.5f * cosf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
560  } else {
561  *uf *= 0.5f * sinf(M_PI * s->rotation);
562  *vf *= 0.5f * cosf(M_PI * s->rotation + M_PI_2);
563  }
564  } else {
565  *uf += *uf * sinf(M_PI * s->rotation);
566  *vf += *vf * cosf(M_PI * s->rotation + M_PI_2);
567  }
568 
569  *uf *= s->saturation;
570  *vf *= s->saturation;
571 }
572 
574  float yf, float uf, float vf,
575  float a, float *out)
576 {
577  if (s->color_mode > CHANNEL) {
578  const int cm = s->color_mode;
579  float y, u, v;
580  int i;
581 
582  for (i = 1; i < FF_ARRAY_ELEMS(color_table[cm]) - 1; i++)
583  if (color_table[cm][i].a >= a)
584  break;
585  // i now is the first item >= the color
586  // now we know to interpolate between item i - 1 and i
587  if (a <= color_table[cm][i - 1].a) {
588  y = color_table[cm][i - 1].y;
589  u = color_table[cm][i - 1].u;
590  v = color_table[cm][i - 1].v;
591  } else if (a >= color_table[cm][i].a) {
592  y = color_table[cm][i].y;
593  u = color_table[cm][i].u;
594  v = color_table[cm][i].v;
595  } else {
596  float start = color_table[cm][i - 1].a;
597  float end = color_table[cm][i].a;
598  float lerpfrac = (a - start) / (end - start);
599  y = color_table[cm][i - 1].y * (1.0f - lerpfrac)
600  + color_table[cm][i].y * lerpfrac;
601  u = color_table[cm][i - 1].u * (1.0f - lerpfrac)
602  + color_table[cm][i].u * lerpfrac;
603  v = color_table[cm][i - 1].v * (1.0f - lerpfrac)
604  + color_table[cm][i].v * lerpfrac;
605  }
606 
607  out[0] = y * yf;
608  out[1] = u * uf;
609  out[2] = v * vf;
610  } else {
611  out[0] = a * yf;
612  out[1] = a * uf;
613  out[2] = a * vf;
614  }
615 }
616 
617 static char *get_time(AVFilterContext *ctx, float seconds, int x)
618 {
619  char *units;
620 
621  if (x == 0)
622  units = av_asprintf("0");
623  else if (log10(seconds) > 6)
624  units = av_asprintf("%.2fh", seconds / (60 * 60));
625  else if (log10(seconds) > 3)
626  units = av_asprintf("%.2fm", seconds / 60);
627  else
628  units = av_asprintf("%.2fs", seconds);
629  return units;
630 }
631 
632 static float log_scale(const float value, const float min, const float max)
633 {
634  if (value < min)
635  return min;
636  if (value > max)
637  return max;
638 
639  {
640  const float b = logf(max / min) / (max - min);
641  const float a = max / expf(max * b);
642 
643  return expf(value * b) * a;
644  }
645 }
646 
647 static float get_log_hz(const int bin, const int num_bins, const float sample_rate)
648 {
649  const float max_freq = sample_rate / 2;
650  const float hz_per_bin = max_freq / num_bins;
651  const float freq = hz_per_bin * bin;
652  const float scaled_freq = log_scale(freq + 1, 21, max_freq) - 1;
653 
654  return num_bins * scaled_freq / max_freq;
655 }
656 
657 static float inv_log_scale(const float value, const float min, const float max)
658 {
659  if (value < min)
660  return min;
661  if (value > max)
662  return max;
663 
664  {
665  const float b = logf(max / min) / (max - min);
666  const float a = max / expf(max * b);
667 
668  return logf(value / a) / b;
669  }
670 }
671 
672 static float bin_pos(const int bin, const int num_bins, const float sample_rate)
673 {
674  const float max_freq = sample_rate / 2;
675  const float hz_per_bin = max_freq / num_bins;
676  const float freq = hz_per_bin * bin;
677  const float scaled_freq = inv_log_scale(freq + 1, 21, max_freq) - 1;
678 
679  return num_bins * scaled_freq / max_freq;
680 }
681 
682 static int draw_legend(AVFilterContext *ctx, int samples)
683 {
684  ShowSpectrumContext *s = ctx->priv;
685  AVFilterLink *inlink = ctx->inputs[0];
686  AVFilterLink *outlink = ctx->outputs[0];
687  int ch, y, x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
688  int multi = (s->mode == SEPARATE && s->color_mode == CHANNEL);
689  float spp = samples / (float)sz;
690  char *text;
691  uint8_t *dst;
692  char chlayout_str[128];
693 
694  av_get_channel_layout_string(chlayout_str, sizeof(chlayout_str), inlink->channels,
695  inlink->channel_layout);
696 
697  text = av_asprintf("%d Hz | %s", inlink->sample_rate, chlayout_str);
698  if (!text)
699  return AVERROR(ENOMEM);
700 
701  drawtext(s->outpicref, 2, outlink->h - 10, "CREATED BY LIBAVFILTER", 0);
702  drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, outlink->h - 10, text, 0);
703  av_freep(&text);
704  if (s->stop) {
705  text = av_asprintf("Zoom: %d Hz - %d Hz", s->start, s->stop);
706  if (!text)
707  return AVERROR(ENOMEM);
708  drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, 3, text, 0);
709  av_freep(&text);
710  }
711 
712  dst = s->outpicref->data[0] + (s->start_y - 1) * s->outpicref->linesize[0] + s->start_x - 1;
713  for (x = 0; x < s->w + 1; x++)
714  dst[x] = 200;
715  dst = s->outpicref->data[0] + (s->start_y + s->h) * s->outpicref->linesize[0] + s->start_x - 1;
716  for (x = 0; x < s->w + 1; x++)
717  dst[x] = 200;
718  for (y = 0; y < s->h + 2; y++) {
719  dst = s->outpicref->data[0] + (y + s->start_y - 1) * s->outpicref->linesize[0];
720  dst[s->start_x - 1] = 200;
721  dst[s->start_x + s->w] = 200;
722  }
723  if (s->orientation == VERTICAL) {
724  int h = s->mode == SEPARATE ? s->h / s->nb_display_channels : s->h;
725  int hh = s->mode == SEPARATE ? -(s->h % s->nb_display_channels) + 1 : 1;
726  for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
727  for (y = 0; y < h; y += 20) {
728  dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
729  dst[s->start_x - 2] = 200;
730  dst[s->start_x + s->w + 1] = 200;
731  }
732  for (y = 0; y < h; y += 40) {
733  dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
734  dst[s->start_x - 3] = 200;
735  dst[s->start_x + s->w + 2] = 200;
736  }
737  dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x;
738  for (x = 0; x < s->w; x+=40)
739  dst[x] = 200;
740  dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x;
741  for (x = 0; x < s->w; x+=80)
742  dst[x] = 200;
743  dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x;
744  for (x = 0; x < s->w; x+=40) {
745  dst[x] = 200;
746  }
747  dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x;
748  for (x = 0; x < s->w; x+=80) {
749  dst[x] = 200;
750  }
751  for (y = 0; y < h; y += 40) {
752  float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
753  float bin = s->fscale == F_LINEAR ? y : get_log_hz(y, h, inlink->sample_rate);
754  float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(h)));
755  char *units;
756 
757  if (hertz == 0)
758  units = av_asprintf("DC");
759  else
760  units = av_asprintf("%.2f", hertz);
761  if (!units)
762  return AVERROR(ENOMEM);
763 
764  drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, h * (ch + 1) + s->start_y - y - 4 - hh, units, 0);
765  av_free(units);
766  }
767  }
768 
769  for (x = 0; x < s->w && s->single_pic; x+=80) {
770  float seconds = x * spp / inlink->sample_rate;
771  char *units = get_time(ctx, seconds, x);
772  if (!units)
773  return AVERROR(ENOMEM);
774 
775  drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->h + s->start_y + 6, units, 0);
776  drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->start_y - 12, units, 0);
777  av_free(units);
778  }
779 
780  drawtext(s->outpicref, outlink->w / 2 - 4 * 4, outlink->h - s->start_y / 2, "TIME", 0);
781  drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 14 * 4, "FREQUENCY (Hz)", 1);
782  } else {
783  int w = s->mode == SEPARATE ? s->w / s->nb_display_channels : s->w;
784  for (y = 0; y < s->h; y += 20) {
785  dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
786  dst[s->start_x - 2] = 200;
787  dst[s->start_x + s->w + 1] = 200;
788  }
789  for (y = 0; y < s->h; y += 40) {
790  dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
791  dst[s->start_x - 3] = 200;
792  dst[s->start_x + s->w + 2] = 200;
793  }
794  for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
795  dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
796  for (x = 0; x < w; x+=40)
797  dst[x] = 200;
798  dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x + w * ch;
799  for (x = 0; x < w; x+=80)
800  dst[x] = 200;
801  dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x + w * ch;
802  for (x = 0; x < w; x+=40) {
803  dst[x] = 200;
804  }
805  dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
806  for (x = 0; x < w; x+=80) {
807  dst[x] = 200;
808  }
809  for (x = 0; x < w - 79; x += 80) {
810  float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
811  float bin = s->fscale == F_LINEAR ? x : get_log_hz(x, w, inlink->sample_rate);
812  float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(w)));
813  char *units;
814 
815  if (hertz == 0)
816  units = av_asprintf("DC");
817  else
818  units = av_asprintf("%.2f", hertz);
819  if (!units)
820  return AVERROR(ENOMEM);
821 
822  drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->start_y - 12, units, 0);
823  drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->h + s->start_y + 6, units, 0);
824  av_free(units);
825  }
826  }
827  for (y = 0; y < s->h && s->single_pic; y+=40) {
828  float seconds = y * spp / inlink->sample_rate;
829  char *units = get_time(ctx, seconds, x);
830  if (!units)
831  return AVERROR(ENOMEM);
832 
833  drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, s->start_y + y - 4, units, 0);
834  av_free(units);
835  }
836  drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 4 * 4, "TIME", 1);
837  drawtext(s->outpicref, outlink->w / 2 - 14 * 4, outlink->h - s->start_y / 2, "FREQUENCY (Hz)", 0);
838  }
839 
840  for (ch = 0; ch < (multi ? s->nb_display_channels : 1); ch++) {
841  int h = multi ? s->h / s->nb_display_channels : s->h;
842 
843  for (y = 0; y < h; y++) {
844  float out[3] = { 0., 127.5, 127.5};
845  int chn;
846 
847  for (chn = 0; chn < (s->mode == SEPARATE ? 1 : s->nb_display_channels); chn++) {
848  float yf, uf, vf;
849  int channel = (multi) ? s->nb_display_channels - ch - 1 : chn;
850  float lout[3];
851 
852  color_range(s, channel, &yf, &uf, &vf);
853  pick_color(s, yf, uf, vf, y / (float)h, lout);
854  out[0] += lout[0];
855  out[1] += lout[1];
856  out[2] += lout[2];
857  }
858  memset(s->outpicref->data[0]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[0] + s->w + s->start_x + 20, av_clip_uint8(out[0]), 10);
859  memset(s->outpicref->data[1]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[1] + s->w + s->start_x + 20, av_clip_uint8(out[1]), 10);
860  memset(s->outpicref->data[2]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[2] + s->w + s->start_x + 20, av_clip_uint8(out[2]), 10);
861  }
862 
863  for (y = 0; ch == 0 && y < h; y += h / 10) {
864  float value = 120.f * log10f(1.f - y / (float)h);
865  char *text;
866 
867  if (value < -120)
868  break;
869  text = av_asprintf("%.0f dB", value);
870  if (!text)
871  continue;
872  drawtext(s->outpicref, s->w + s->start_x + 35, s->start_y + y - 5, text, 0);
873  av_free(text);
874  }
875  }
876 
877  return 0;
878 }
879 
880 static float get_value(AVFilterContext *ctx, int ch, int y)
881 {
882  ShowSpectrumContext *s = ctx->priv;
883  float *magnitudes = s->magnitudes[ch];
884  float *phases = s->phases[ch];
885  float a;
886 
887  switch (s->data) {
888  case D_MAGNITUDE:
889  /* get magnitude */
890  a = magnitudes[y];
891  break;
892  case D_PHASE:
893  /* get phase */
894  a = phases[y];
895  break;
896  default:
897  av_assert0(0);
898  }
899 
900  /* apply scale */
901  switch (s->scale) {
902  case LINEAR:
903  a = av_clipf(a, 0, 1);
904  break;
905  case SQRT:
906  a = av_clipf(sqrtf(a), 0, 1);
907  break;
908  case CBRT:
909  a = av_clipf(cbrtf(a), 0, 1);
910  break;
911  case FOURTHRT:
912  a = av_clipf(sqrtf(sqrtf(a)), 0, 1);
913  break;
914  case FIFTHRT:
915  a = av_clipf(powf(a, 0.20), 0, 1);
916  break;
917  case LOG:
918  a = 1.f + log10f(av_clipf(a, 1e-6, 1)) / 6.f; // zero = -120dBFS
919  break;
920  default:
921  av_assert0(0);
922  }
923 
924  return a;
925 }
926 
927 static int plot_channel_lin(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
928 {
929  ShowSpectrumContext *s = ctx->priv;
930  const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
931  const int ch = jobnr;
932  float yf, uf, vf;
933  int y;
934 
935  /* decide color range */
936  color_range(s, ch, &yf, &uf, &vf);
937 
938  /* draw the channel */
939  for (y = 0; y < h; y++) {
940  int row = (s->mode == COMBINED) ? y : ch * h + y;
941  float *out = &s->color_buffer[ch][3 * row];
942  float a = get_value(ctx, ch, y);
943 
944  pick_color(s, yf, uf, vf, a, out);
945  }
946 
947  return 0;
948 }
949 
950 static int plot_channel_log(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
951 {
952  ShowSpectrumContext *s = ctx->priv;
953  AVFilterLink *inlink = ctx->inputs[0];
954  const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
955  const int ch = jobnr;
956  float y, yf, uf, vf;
957  int yy = 0;
958 
959  /* decide color range */
960  color_range(s, ch, &yf, &uf, &vf);
961 
962  /* draw the channel */
963  for (y = 0; y < h && yy < h; yy++) {
964  float pos0 = bin_pos(yy+0, h, inlink->sample_rate);
965  float pos1 = bin_pos(yy+1, h, inlink->sample_rate);
966  float delta = pos1 - pos0;
967  float a0, a1;
968 
969  a0 = get_value(ctx, ch, yy+0);
970  a1 = get_value(ctx, ch, FFMIN(yy+1, h-1));
971  for (float j = pos0; j < pos1 && y + j - pos0 < h; j++) {
972  float row = (s->mode == COMBINED) ? y + j - pos0 : ch * h + y + j - pos0;
973  float *out = &s->color_buffer[ch][3 * FFMIN(lrintf(row), h-1)];
974  float lerpfrac = (j - pos0) / delta;
975 
976  pick_color(s, yf, uf, vf, lerpfrac * a1 + (1.f-lerpfrac) * a0, out);
977  }
978  y += delta;
979  }
980 
981  return 0;
982 }
983 
984 static int config_output(AVFilterLink *outlink)
985 {
986  AVFilterContext *ctx = outlink->src;
987  AVFilterLink *inlink = ctx->inputs[0];
988  ShowSpectrumContext *s = ctx->priv;
989  int i, fft_bits, h, w;
990  float overlap;
991 
992  switch (s->fscale) {
993  case F_LINEAR: s->plot_channel = plot_channel_lin; break;
994  case F_LOG: s->plot_channel = plot_channel_log; break;
995  default: return AVERROR_BUG;
996  }
997 
998  s->stop = FFMIN(s->stop, inlink->sample_rate / 2);
999  if (s->stop && s->stop <= s->start) {
1000  av_log(ctx, AV_LOG_ERROR, "Stop frequency should be greater than start.\n");
1001  return AVERROR(EINVAL);
1002  }
1003 
1004  if (!strcmp(ctx->filter->name, "showspectrumpic"))
1005  s->single_pic = 1;
1006 
1007  outlink->w = s->w;
1008  outlink->h = s->h;
1009  outlink->sample_aspect_ratio = (AVRational){1,1};
1010 
1011  if (s->legend) {
1012  s->start_x = (log10(inlink->sample_rate) + 1) * 25;
1013  s->start_y = 64;
1014  outlink->w += s->start_x * 2;
1015  outlink->h += s->start_y * 2;
1016  }
1017 
1018  h = (s->mode == COMBINED || s->orientation == HORIZONTAL) ? s->h : s->h / inlink->channels;
1019  w = (s->mode == COMBINED || s->orientation == VERTICAL) ? s->w : s->w / inlink->channels;
1020  s->channel_height = h;
1021  s->channel_width = w;
1022 
1023  if (s->orientation == VERTICAL) {
1024  /* FFT window size (precision) according to the requested output frame height */
1025  for (fft_bits = 1; 1 << fft_bits < 2 * h; fft_bits++);
1026  } else {
1027  /* FFT window size (precision) according to the requested output frame width */
1028  for (fft_bits = 1; 1 << fft_bits < 2 * w; fft_bits++);
1029  }
1030 
1031  s->win_size = 1 << fft_bits;
1032  s->buf_size = s->win_size << !!s->stop;
1033 
1034  if (!s->fft) {
1035  s->fft = av_calloc(inlink->channels, sizeof(*s->fft));
1036  if (!s->fft)
1037  return AVERROR(ENOMEM);
1038  }
1039 
1040  if (s->stop) {
1041  if (!s->ifft) {
1042  s->ifft = av_calloc(inlink->channels, sizeof(*s->ifft));
1043  if (!s->ifft)
1044  return AVERROR(ENOMEM);
1045  }
1046  }
1047 
1048  /* (re-)configuration if the video output changed (or first init) */
1049  if (fft_bits != s->fft_bits) {
1050  AVFrame *outpicref;
1051 
1052  s->fft_bits = fft_bits;
1053 
1054  /* FFT buffers: x2 for each (display) channel buffer.
1055  * Note: we use free and malloc instead of a realloc-like function to
1056  * make sure the buffer is aligned in memory for the FFT functions. */
1057  for (i = 0; i < s->nb_display_channels; i++) {
1058  if (s->stop) {
1059  av_fft_end(s->ifft[i]);
1060  av_freep(&s->fft_scratch[i]);
1061  }
1062  av_fft_end(s->fft[i]);
1063  av_freep(&s->fft_data[i]);
1064  }
1065  av_freep(&s->fft_data);
1066 
1067  s->nb_display_channels = inlink->channels;
1068  for (i = 0; i < s->nb_display_channels; i++) {
1069  s->fft[i] = av_fft_init(fft_bits + !!s->stop, 0);
1070  if (s->stop) {
1071  s->ifft[i] = av_fft_init(fft_bits + !!s->stop, 1);
1072  if (!s->ifft[i]) {
1073  av_log(ctx, AV_LOG_ERROR, "Unable to create Inverse FFT context. "
1074  "The window size might be too high.\n");
1075  return AVERROR(EINVAL);
1076  }
1077  }
1078  if (!s->fft[i]) {
1079  av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
1080  "The window size might be too high.\n");
1081  return AVERROR(EINVAL);
1082  }
1083  }
1084 
1085  s->magnitudes = av_calloc(s->nb_display_channels, sizeof(*s->magnitudes));
1086  if (!s->magnitudes)
1087  return AVERROR(ENOMEM);
1088  for (i = 0; i < s->nb_display_channels; i++) {
1089  s->magnitudes[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->magnitudes));
1090  if (!s->magnitudes[i])
1091  return AVERROR(ENOMEM);
1092  }
1093 
1094  s->phases = av_calloc(s->nb_display_channels, sizeof(*s->phases));
1095  if (!s->phases)
1096  return AVERROR(ENOMEM);
1097  for (i = 0; i < s->nb_display_channels; i++) {
1098  s->phases[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->phases));
1099  if (!s->phases[i])
1100  return AVERROR(ENOMEM);
1101  }
1102 
1103  av_freep(&s->color_buffer);
1105  if (!s->color_buffer)
1106  return AVERROR(ENOMEM);
1107  for (i = 0; i < s->nb_display_channels; i++) {
1108  s->color_buffer[i] = av_calloc(s->orientation == VERTICAL ? s->h * 3 : s->w * 3, sizeof(**s->color_buffer));
1109  if (!s->color_buffer[i])
1110  return AVERROR(ENOMEM);
1111  }
1112 
1113  s->fft_data = av_calloc(s->nb_display_channels, sizeof(*s->fft_data));
1114  if (!s->fft_data)
1115  return AVERROR(ENOMEM);
1116  s->fft_scratch = av_calloc(s->nb_display_channels, sizeof(*s->fft_scratch));
1117  if (!s->fft_scratch)
1118  return AVERROR(ENOMEM);
1119  for (i = 0; i < s->nb_display_channels; i++) {
1120  s->fft_data[i] = av_calloc(s->buf_size, sizeof(**s->fft_data));
1121  if (!s->fft_data[i])
1122  return AVERROR(ENOMEM);
1123 
1124  s->fft_scratch[i] = av_calloc(s->buf_size, sizeof(**s->fft_scratch));
1125  if (!s->fft_scratch[i])
1126  return AVERROR(ENOMEM);
1127  }
1128 
1129  /* pre-calc windowing function */
1130  s->window_func_lut =
1132  sizeof(*s->window_func_lut));
1133  if (!s->window_func_lut)
1134  return AVERROR(ENOMEM);
1135  generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
1136  if (s->overlap == 1)
1137  s->overlap = overlap;
1138  s->hop_size = (1.f - s->overlap) * s->win_size;
1139  if (s->hop_size < 1) {
1140  av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap);
1141  return AVERROR(EINVAL);
1142  }
1143 
1144  for (s->win_scale = 0, i = 0; i < s->win_size; i++) {
1145  s->win_scale += s->window_func_lut[i] * s->window_func_lut[i];
1146  }
1147  s->win_scale = 1.f / sqrtf(s->win_scale);
1148 
1149  /* prepare the initial picref buffer (black frame) */
1150  av_frame_free(&s->outpicref);
1151  s->outpicref = outpicref =
1152  ff_get_video_buffer(outlink, outlink->w, outlink->h);
1153  if (!outpicref)
1154  return AVERROR(ENOMEM);
1155  outpicref->sample_aspect_ratio = (AVRational){1,1};
1156  for (i = 0; i < outlink->h; i++) {
1157  memset(outpicref->data[0] + i * outpicref->linesize[0], 0, outlink->w);
1158  memset(outpicref->data[1] + i * outpicref->linesize[1], 128, outlink->w);
1159  memset(outpicref->data[2] + i * outpicref->linesize[2], 128, outlink->w);
1160  }
1161  outpicref->color_range = AVCOL_RANGE_JPEG;
1162 
1163  if (!s->single_pic && s->legend)
1164  draw_legend(ctx, 0);
1165  }
1166 
1167  if ((s->orientation == VERTICAL && s->xpos >= s->w) ||
1168  (s->orientation == HORIZONTAL && s->xpos >= s->h))
1169  s->xpos = 0;
1170 
1171  s->auto_frame_rate = av_make_q(inlink->sample_rate, s->hop_size);
1172  if (s->orientation == VERTICAL && s->sliding == FULLFRAME)
1173  s->auto_frame_rate.den *= s->w;
1174  if (s->orientation == HORIZONTAL && s->sliding == FULLFRAME)
1175  s->auto_frame_rate.den *= s->h;
1176  if (!s->single_pic && strcmp(s->rate_str, "auto")) {
1177  int ret = av_parse_video_rate(&s->frame_rate, s->rate_str);
1178  if (ret < 0)
1179  return ret;
1180  } else {
1181  s->frame_rate = s->auto_frame_rate;
1182  }
1183  outlink->frame_rate = s->frame_rate;
1184  outlink->time_base = av_inv_q(outlink->frame_rate);
1185 
1186  if (s->orientation == VERTICAL) {
1187  s->combine_buffer =
1188  av_realloc_f(s->combine_buffer, s->h * 3,
1189  sizeof(*s->combine_buffer));
1190  } else {
1191  s->combine_buffer =
1192  av_realloc_f(s->combine_buffer, s->w * 3,
1193  sizeof(*s->combine_buffer));
1194  }
1195 
1196  av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d FFT window size:%d\n",
1197  s->w, s->h, s->win_size);
1198 
1200  s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->win_size);
1201  if (!s->fifo)
1202  return AVERROR(ENOMEM);
1203  return 0;
1204 }
1205 
1206 #define RE(y, ch) s->fft_data[ch][y].re
1207 #define IM(y, ch) s->fft_data[ch][y].im
1208 #define MAGNITUDE(y, ch) hypotf(RE(y, ch), IM(y, ch))
1209 #define PHASE(y, ch) atan2f(IM(y, ch), RE(y, ch))
1210 
1211 static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1212 {
1213  ShowSpectrumContext *s = ctx->priv;
1214  const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
1215  int y, h = s->orientation == VERTICAL ? s->h : s->w;
1216  const float f = s->gain * w;
1217  const int ch = jobnr;
1218  float *magnitudes = s->magnitudes[ch];
1219 
1220  for (y = 0; y < h; y++)
1221  magnitudes[y] = MAGNITUDE(y, ch) * f;
1222 
1223  return 0;
1224 }
1225 
1226 static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1227 {
1228  ShowSpectrumContext *s = ctx->priv;
1229  const int h = s->orientation == VERTICAL ? s->h : s->w;
1230  const int ch = jobnr;
1231  float *phases = s->phases[ch];
1232  int y;
1233 
1234  for (y = 0; y < h; y++)
1235  phases[y] = (PHASE(y, ch) / M_PI + 1) / 2;
1236 
1237  return 0;
1238 }
1239 
1241 {
1242  const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
1243  int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
1244  const float f = s->gain * w;
1245 
1246  for (ch = 0; ch < s->nb_display_channels; ch++) {
1247  float *magnitudes = s->magnitudes[ch];
1248 
1249  for (y = 0; y < h; y++)
1250  magnitudes[y] += MAGNITUDE(y, ch) * f;
1251  }
1252 }
1253 
1255 {
1256  int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
1257 
1258  for (ch = 0; ch < s->nb_display_channels; ch++) {
1259  float *magnitudes = s->magnitudes[ch];
1260 
1261  for (y = 0; y < h; y++)
1262  magnitudes[y] *= scale;
1263  }
1264 }
1265 
1267 {
1268  int y;
1269 
1270  for (y = 0; y < size; y++) {
1271  s->combine_buffer[3 * y ] = 0;
1272  s->combine_buffer[3 * y + 1] = 127.5;
1273  s->combine_buffer[3 * y + 2] = 127.5;
1274  }
1275 }
1276 
1277 static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples)
1278 {
1279  AVFilterContext *ctx = inlink->dst;
1280  AVFilterLink *outlink = ctx->outputs[0];
1281  ShowSpectrumContext *s = ctx->priv;
1282  AVFrame *outpicref = s->outpicref;
1283  int ret, plane, x, y, z = s->orientation == VERTICAL ? s->h : s->w;
1284 
1285  /* fill a new spectrum column */
1286  /* initialize buffer for combining to black */
1287  clear_combine_buffer(s, z);
1288 
1290 
1291  for (y = 0; y < z * 3; y++) {
1292  for (x = 0; x < s->nb_display_channels; x++) {
1293  s->combine_buffer[y] += s->color_buffer[x][y];
1294  }
1295  }
1296 
1298  /* copy to output */
1299  if (s->orientation == VERTICAL) {
1300  if (s->sliding == SCROLL) {
1301  for (plane = 0; plane < 3; plane++) {
1302  for (y = 0; y < s->h; y++) {
1303  uint8_t *p = outpicref->data[plane] + s->start_x +
1304  (y + s->start_y) * outpicref->linesize[plane];
1305  memmove(p, p + 1, s->w - 1);
1306  }
1307  }
1308  s->xpos = s->w - 1;
1309  } else if (s->sliding == RSCROLL) {
1310  for (plane = 0; plane < 3; plane++) {
1311  for (y = 0; y < s->h; y++) {
1312  uint8_t *p = outpicref->data[plane] + s->start_x +
1313  (y + s->start_y) * outpicref->linesize[plane];
1314  memmove(p + 1, p, s->w - 1);
1315  }
1316  }
1317  s->xpos = 0;
1318  }
1319  for (plane = 0; plane < 3; plane++) {
1320  uint8_t *p = outpicref->data[plane] + s->start_x +
1321  (outlink->h - 1 - s->start_y) * outpicref->linesize[plane] +
1322  s->xpos;
1323  for (y = 0; y < s->h; y++) {
1324  *p = lrintf(av_clipf(s->combine_buffer[3 * y + plane], 0, 255));
1325  p -= outpicref->linesize[plane];
1326  }
1327  }
1328  } else {
1329  if (s->sliding == SCROLL) {
1330  for (plane = 0; plane < 3; plane++) {
1331  for (y = 1; y < s->h; y++) {
1332  memmove(outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
1333  outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x,
1334  s->w);
1335  }
1336  }
1337  s->xpos = s->h - 1;
1338  } else if (s->sliding == RSCROLL) {
1339  for (plane = 0; plane < 3; plane++) {
1340  for (y = s->h - 1; y >= 1; y--) {
1341  memmove(outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x,
1342  outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
1343  s->w);
1344  }
1345  }
1346  s->xpos = 0;
1347  }
1348  for (plane = 0; plane < 3; plane++) {
1349  uint8_t *p = outpicref->data[plane] + s->start_x +
1350  (s->xpos + s->start_y) * outpicref->linesize[plane];
1351  for (x = 0; x < s->w; x++) {
1352  *p = lrintf(av_clipf(s->combine_buffer[3 * x + plane], 0, 255));
1353  p++;
1354  }
1355  }
1356  }
1357 
1358  if (s->sliding != FULLFRAME || s->xpos == 0)
1359  outpicref->pts = av_rescale_q(insamples->pts, inlink->time_base, outlink->time_base);
1360 
1361  s->xpos++;
1362  if (s->orientation == VERTICAL && s->xpos >= s->w)
1363  s->xpos = 0;
1364  if (s->orientation == HORIZONTAL && s->xpos >= s->h)
1365  s->xpos = 0;
1366  if (!s->single_pic && (s->sliding != FULLFRAME || s->xpos == 0)) {
1367  if (s->old_pts < outpicref->pts) {
1368  AVFrame *clone;
1369 
1370  if (s->legend) {
1371  char *units = get_time(ctx, insamples->pts /(float)inlink->sample_rate, x);
1372  if (!units)
1373  return AVERROR(ENOMEM);
1374 
1375  if (s->orientation == VERTICAL) {
1376  for (y = 0; y < 10; y++) {
1377  memset(s->outpicref->data[0] + outlink->w / 2 - 4 * s->old_len +
1378  (outlink->h - s->start_y / 2 - 20 + y) * s->outpicref->linesize[0], 0, 10 * s->old_len);
1379  }
1380  drawtext(s->outpicref,
1381  outlink->w / 2 - 4 * strlen(units),
1382  outlink->h - s->start_y / 2 - 20,
1383  units, 0);
1384  } else {
1385  for (y = 0; y < 10 * s->old_len; y++) {
1386  memset(s->outpicref->data[0] + s->start_x / 7 + 20 +
1387  (outlink->h / 2 - 4 * s->old_len + y) * s->outpicref->linesize[0], 0, 10);
1388  }
1389  drawtext(s->outpicref,
1390  s->start_x / 7 + 20,
1391  outlink->h / 2 - 4 * strlen(units),
1392  units, 1);
1393  }
1394  s->old_len = strlen(units);
1395  av_free(units);
1396  }
1397  s->old_pts = outpicref->pts;
1398  clone = av_frame_clone(s->outpicref);
1399  if (!clone)
1400  return AVERROR(ENOMEM);
1401  ret = ff_filter_frame(outlink, clone);
1402  if (ret < 0)
1403  return ret;
1404  return 0;
1405  }
1406  }
1407 
1408  return 1;
1409 }
1410 
1411 #if CONFIG_SHOWSPECTRUM_FILTER
1412 
1413 static int activate(AVFilterContext *ctx)
1414 {
1415  AVFilterLink *inlink = ctx->inputs[0];
1416  AVFilterLink *outlink = ctx->outputs[0];
1417  ShowSpectrumContext *s = ctx->priv;
1418  int ret;
1419 
1420  FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
1421 
1422  if (av_audio_fifo_size(s->fifo) < s->win_size) {
1423  AVFrame *frame = NULL;
1424 
1425  ret = ff_inlink_consume_frame(inlink, &frame);
1426  if (ret < 0)
1427  return ret;
1428  if (ret > 0) {
1429  s->pts = frame->pts;
1430  s->consumed = 0;
1431 
1432  av_audio_fifo_write(s->fifo, (void **)frame->extended_data, frame->nb_samples);
1433  av_frame_free(&frame);
1434  }
1435  }
1436 
1437  if (s->outpicref && (av_audio_fifo_size(s->fifo) >= s->win_size ||
1438  ff_outlink_get_status(inlink))) {
1439  AVFrame *fin = ff_get_audio_buffer(inlink, s->win_size);
1440  if (!fin)
1441  return AVERROR(ENOMEM);
1442 
1443  fin->pts = s->pts + s->consumed;
1444  s->consumed += s->hop_size;
1445  ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data,
1447  if (ret < 0) {
1448  av_frame_free(&fin);
1449  return ret;
1450  }
1451 
1452  av_assert0(fin->nb_samples == s->win_size);
1453 
1455 
1456  if (s->data == D_MAGNITUDE)
1458 
1459  if (s->data == D_PHASE)
1461 
1462  ret = plot_spectrum_column(inlink, fin);
1463 
1464  av_frame_free(&fin);
1466  if (ret <= 0 && !ff_outlink_get_status(inlink))
1467  return ret;
1468  }
1469 
1470  if (ff_outlink_get_status(inlink) == AVERROR_EOF &&
1471  s->sliding == FULLFRAME &&
1472  s->xpos > 0 && s->outpicref) {
1473  int64_t pts;
1474 
1475  if (s->orientation == VERTICAL) {
1476  for (int i = 0; i < outlink->h; i++) {
1477  memset(s->outpicref->data[0] + i * s->outpicref->linesize[0] + s->xpos, 0, outlink->w - s->xpos);
1478  memset(s->outpicref->data[1] + i * s->outpicref->linesize[1] + s->xpos, 128, outlink->w - s->xpos);
1479  memset(s->outpicref->data[2] + i * s->outpicref->linesize[2] + s->xpos, 128, outlink->w - s->xpos);
1480  }
1481  } else {
1482  for (int i = s->xpos; i < outlink->h; i++) {
1483  memset(s->outpicref->data[0] + i * s->outpicref->linesize[0], 0, outlink->w);
1484  memset(s->outpicref->data[1] + i * s->outpicref->linesize[1], 128, outlink->w);
1485  memset(s->outpicref->data[2] + i * s->outpicref->linesize[2], 128, outlink->w);
1486  }
1487  }
1488  s->outpicref->pts += s->consumed;
1489  pts = s->outpicref->pts;
1490  ret = ff_filter_frame(outlink, s->outpicref);
1491  s->outpicref = NULL;
1492  ff_outlink_set_status(outlink, AVERROR_EOF, pts);
1493  return 0;
1494  }
1495 
1496  FF_FILTER_FORWARD_STATUS(inlink, outlink);
1497  if (av_audio_fifo_size(s->fifo) >= s->win_size ||
1498  ff_outlink_get_status(inlink) == AVERROR_EOF) {
1499  ff_filter_set_ready(ctx, 10);
1500  return 0;
1501  }
1502 
1503  if (ff_outlink_frame_wanted(outlink) && av_audio_fifo_size(s->fifo) < s->win_size &&
1504  ff_outlink_get_status(inlink) != AVERROR_EOF) {
1505  ff_inlink_request_frame(inlink);
1506  return 0;
1507  }
1508 
1509  return FFERROR_NOT_READY;
1510 }
1511 
1512 static const AVFilterPad showspectrum_inputs[] = {
1513  {
1514  .name = "default",
1515  .type = AVMEDIA_TYPE_AUDIO,
1516  },
1517  { NULL }
1518 };
1519 
1520 static const AVFilterPad showspectrum_outputs[] = {
1521  {
1522  .name = "default",
1523  .type = AVMEDIA_TYPE_VIDEO,
1524  .config_props = config_output,
1525  },
1526  { NULL }
1527 };
1528 
1530  .name = "showspectrum",
1531  .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output."),
1532  .uninit = uninit,
1533  .query_formats = query_formats,
1534  .priv_size = sizeof(ShowSpectrumContext),
1535  .inputs = showspectrum_inputs,
1536  .outputs = showspectrum_outputs,
1537  .activate = activate,
1538  .priv_class = &showspectrum_class,
1540 };
1541 #endif // CONFIG_SHOWSPECTRUM_FILTER
1542 
1543 #if CONFIG_SHOWSPECTRUMPIC_FILTER
1544 
1545 static const AVOption showspectrumpic_options[] = {
1546  { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
1547  { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
1548  { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_MODES-1, FLAGS, "mode" },
1549  { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
1550  { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
1551  { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=INTENSITY}, 0, NB_CLMODES-1, FLAGS, "color" },
1552  { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, "color" },
1553  { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
1554  { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, "color" },
1555  { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, "color" },
1556  { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, "color" },
1557  { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, "color" },
1558  { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, "color" },
1559  { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, "color" },
1560  { "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, "color" },
1561  { "magma", "magma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MAGMA}, 0, 0, FLAGS, "color" },
1562  { "green", "green based coloring", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, FLAGS, "color" },
1563  { "viridis", "viridis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS}, 0, 0, FLAGS, "color" },
1564  { "plasma", "plasma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=PLASMA}, 0, 0, FLAGS, "color" },
1565  { "cividis", "cividis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS}, 0, 0, FLAGS, "color" },
1566  { "terrain", "terrain based coloring", 0, AV_OPT_TYPE_CONST, {.i64=TERRAIN}, 0, 0, FLAGS, "color" },
1567  { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=LOG}, 0, NB_SCALES-1, FLAGS, "scale" },
1568  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
1569  { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, "scale" },
1570  { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, "scale" },
1571  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" },
1572  { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
1573  { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" },
1574  { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
1575  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" },
1576  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, "fscale" },
1577  { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
1578  { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
1579  { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" },
1580  { "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
1581  { "hann", "Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
1582  { "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
1583  { "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" },
1584  { "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
1585  { "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" },
1586  { "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" },
1587  { "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" },
1588  { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
1589  { "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" },
1590  { "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" },
1591  { "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" },
1592  { "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" },
1593  { "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" },
1594  { "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" },
1595  { "dolph", "Dolph-Chebyshev", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH}, 0, 0, FLAGS, "win_func" },
1596  { "cauchy", "Cauchy", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY}, 0, 0, FLAGS, "win_func" },
1597  { "parzen", "Parzen", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN}, 0, 0, FLAGS, "win_func" },
1598  { "poisson", "Poisson", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON}, 0, 0, FLAGS, "win_func" },
1599  { "bohman", "Bohman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN}, 0, 0, FLAGS, "win_func" },
1600  { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
1601  { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, "orientation" },
1602  { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
1603  { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
1604  { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
1605  { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
1606  { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
1607  { "stop", "stop frequency", OFFSET(stop), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
1608  { NULL }
1609 };
1610 
1611 AVFILTER_DEFINE_CLASS(showspectrumpic);
1612 
1613 static int showspectrumpic_request_frame(AVFilterLink *outlink)
1614 {
1615  AVFilterContext *ctx = outlink->src;
1616  ShowSpectrumContext *s = ctx->priv;
1617  AVFilterLink *inlink = ctx->inputs[0];
1618  int ret, samples;
1619 
1620  ret = ff_request_frame(inlink);
1621  samples = av_audio_fifo_size(s->fifo);
1622  if (ret == AVERROR_EOF && s->outpicref && samples > 0) {
1623  int consumed = 0;
1624  int x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
1625  int ch, spf, spb;
1626  AVFrame *fin;
1627 
1628  spf = s->win_size * (samples / ((s->win_size * sz) * ceil(samples / (float)(s->win_size * sz))));
1629  spf = FFMAX(1, spf);
1630 
1631  spb = (samples / (spf * sz)) * spf;
1632 
1633  fin = ff_get_audio_buffer(inlink, s->win_size);
1634  if (!fin)
1635  return AVERROR(ENOMEM);
1636 
1637  while (x < sz) {
1638  ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size);
1639  if (ret < 0) {
1640  av_frame_free(&fin);
1641  return ret;
1642  }
1643 
1644  av_audio_fifo_drain(s->fifo, spf);
1645 
1646  if (ret < s->win_size) {
1647  for (ch = 0; ch < s->nb_display_channels; ch++) {
1648  memset(fin->extended_data[ch] + ret * sizeof(float), 0,
1649  (s->win_size - ret) * sizeof(float));
1650  }
1651  }
1652 
1654  acalc_magnitudes(s);
1655 
1656  consumed += spf;
1657  if (consumed >= spb) {
1658  int h = s->orientation == VERTICAL ? s->h : s->w;
1659 
1660  scale_magnitudes(s, 1.f / (consumed / spf));
1661  plot_spectrum_column(inlink, fin);
1662  consumed = 0;
1663  x++;
1664  for (ch = 0; ch < s->nb_display_channels; ch++)
1665  memset(s->magnitudes[ch], 0, h * sizeof(float));
1666  }
1667  }
1668 
1669  av_frame_free(&fin);
1670  s->outpicref->pts = 0;
1671 
1672  if (s->legend)
1673  draw_legend(ctx, samples);
1674 
1675  ret = ff_filter_frame(outlink, s->outpicref);
1676  s->outpicref = NULL;
1677  }
1678 
1679  return ret;
1680 }
1681 
1682 static int showspectrumpic_filter_frame(AVFilterLink *inlink, AVFrame *insamples)
1683 {
1684  AVFilterContext *ctx = inlink->dst;
1685  ShowSpectrumContext *s = ctx->priv;
1686  int ret;
1687 
1688  ret = av_audio_fifo_write(s->fifo, (void **)insamples->extended_data, insamples->nb_samples);
1689  av_frame_free(&insamples);
1690  return ret;
1691 }
1692 
1693 static const AVFilterPad showspectrumpic_inputs[] = {
1694  {
1695  .name = "default",
1696  .type = AVMEDIA_TYPE_AUDIO,
1697  .filter_frame = showspectrumpic_filter_frame,
1698  },
1699  { NULL }
1700 };
1701 
1702 static const AVFilterPad showspectrumpic_outputs[] = {
1703  {
1704  .name = "default",
1705  .type = AVMEDIA_TYPE_VIDEO,
1706  .config_props = config_output,
1707  .request_frame = showspectrumpic_request_frame,
1708  },
1709  { NULL }
1710 };
1711 
1713  .name = "showspectrumpic",
1714  .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output single picture."),
1715  .uninit = uninit,
1716  .query_formats = query_formats,
1717  .priv_size = sizeof(ShowSpectrumContext),
1718  .inputs = showspectrumpic_inputs,
1719  .outputs = showspectrumpic_outputs,
1720  .priv_class = &showspectrumpic_class,
1722 };
1723 
1724 #endif // CONFIG_SHOWSPECTRUMPIC_FILTER
float, planar
Definition: samplefmt.h:69
int ff_inlink_consume_frame(AVFilterLink *link, AVFrame **rframe)
Take a frame from the link&#39;s FIFO and update the link&#39;s stats.
Definition: avfilter.c:1476
#define NULL
Definition: coverity.c:32
AVAudioFifo * av_audio_fifo_alloc(enum AVSampleFormat sample_fmt, int channels, int nb_samples)
Allocate an AVAudioFifo.
Definition: audio_fifo.c:59
int size
#define av_realloc_f(p, o, n)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
int av_parse_video_rate(AVRational *rate, const char *arg)
Parse str and store the detected values in *rate.
Definition: parseutils.c:179
AVOption.
Definition: opt.h:246
av_cold void av_fft_end(FFTContext *s)
Definition: avfft.c:48
float rotation
color rotation
static int plot_channel_log(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
Main libavfilter public API header.
const char * g
Definition: vf_curves.c:115
static float get_log_hz(const int bin, const int num_bins, const float sample_rate)
FFTComplex ** fft_data
bins holder for each (displayed) channels
static int plot_channel_lin(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define a0
Definition: regdef.h:46
static int draw_legend(AVFilterContext *ctx, int samples)
void av_audio_fifo_free(AVAudioFifo *af)
Free an AVAudioFifo.
Definition: audio_fifo.c:45
const char * b
Definition: vf_curves.c:116
#define FFERROR_NOT_READY
Filters implementation helper functions.
Definition: filters.h:34
#define a1
Definition: regdef.h:47
float * window_func_lut
Window function LUT.
FFTSample re
Definition: avfft.h:38
color_range
void av_fft_permute(FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling ff_fft_calc().
Definition: avfft.c:38
static void generate_window_func(float *lut, int N, int win_func, float *overlap)
Definition: window_func.h:36
int fft_bits
number of bits (FFT window size = 1<<fft_bits)
static int query_formats(AVFilterContext *ctx)
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:104
int sliding
1 if sliding mode, 0 otherwise
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
Definition: filters.h:189
void ff_inlink_request_frame(AVFilterLink *link)
Mark that a frame is wanted on the link.
Definition: avfilter.c:1602
#define N
Definition: af_mcompand.c:54
static int ff_outlink_frame_wanted(AVFilterLink *link)
Test if a frame is wanted on an output link.
Definition: filters.h:172
int mode
channel display mode
#define log2(x)
Definition: libm.h:404
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
Definition: mem.c:245
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:300
DisplayScale
const char * name
Pad name.
Definition: internal.h:60
AVFilterLink ** inputs
array of pointers to input links
Definition: avfilter.h:346
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int ff_channel_layouts_ref(AVFilterChannelLayouts *f, AVFilterChannelLayouts **ref)
Add *ref as a new reference to f.
Definition: formats.c:479
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1075
#define M(a, b)
Definition: vp3dsp.c:45
static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o)
uint8_t
#define av_cold
Definition: attributes.h:88
float delta
static const AVOption showspectrum_options[]
AVOptions.
static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define f(width, name)
Definition: cbs_vp9.c:255
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:92
AVRational auto_frame_rate
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:393
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:262
#define cosf(x)
Definition: libm.h:78
static AVFrame * frame
static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AVERROR_EOF
End of file.
Definition: error.h:55
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
#define lrintf(x)
Definition: libm_mips.h:70
#define max(a, b)
Definition: cuda_runtime.h:33
static char * get_time(AVFilterContext *ctx, float seconds, int x)
#define av_log(a,...)
SlideMode
#define cm
Definition: dvbsubdec.c:37
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
Definition: filters.h:199
A filter pad used for either input or output.
Definition: internal.h:54
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
Definition: mathematics.c:142
#define expf(x)
Definition: libm.h:283
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define PHASE(y, ch)
const uint8_t avpriv_cga_font[2048]
Definition: xga_font_data.c:29
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
Definition: audio.c:86
static const uint16_t mask[17]
Definition: lzw.c:38
#define S(s, c, i)
#define AVERROR(e)
Definition: error.h:43
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:188
float ** color_buffer
color buffer (3 * h * ch items)
void * priv
private data for use by the filter
Definition: avfilter.h:353
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: frame.h:544
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:116
float saturation
color saturation multiplier
const char * arg
Definition: jacosubdec.c:66
float * combine_buffer
color combining buffer (3 * h items)
simple assert() macros that are a bit more flexible than ISO C assert().
FFTContext * av_fft_init(int nbits, int inverse)
Set up a complex FFT.
Definition: avfft.c:28
#define FFMAX(a, b)
Definition: common.h:94
#define powf(x, y)
Definition: libm.h:50
Context for an Audio FIFO Buffer.
Definition: audio_fifo.c:34
char * av_asprintf(const char *fmt,...)
Definition: avstring.c:113
int av_audio_fifo_size(AVAudioFifo *af)
Get the current number of samples in the AVAudioFifo available for reading.
Definition: audio_fifo.c:228
Definition: fft.h:88
audio channel layout utility functions
#define FFMIN(a, b)
Definition: common.h:96
int ff_formats_ref(AVFilterFormats *f, AVFilterFormats **ref)
Add *ref as a new reference to formats.
Definition: formats.c:484
#define M_PI_2
Definition: mathematics.h:55
AVFormatContext * ctx
Definition: movenc.c:48
ColorMode
static int activate(AVFilterContext *ctx)
Definition: af_adeclick.c:622
static void acalc_magnitudes(ShowSpectrumContext *s)
#define s(width, name)
Definition: cbs_vp9.c:257
#define FLAGS
static float get_value(AVFilterContext *ctx, int ch, int y)
#define MAGNITUDE(y, ch)
#define L(x)
Definition: vp56_arith.h:36
static const AVFilterPad inputs[]
Definition: af_acontrast.c:193
FrequencyScale
Definition: avf_showfreqs.c:41
AVFilterChannelLayouts * ff_all_channel_layouts(void)
Construct an empty AVFilterChannelLayouts/AVFilterFormats struct – representing any channel layout (...
Definition: formats.c:445
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
Definition: frame.c:541
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
#define FF_ARRAY_ELEMS(a)
FFTContext ** ifft
Inverse Fast Fourier Transform context.
the normal 2^n-1 "JPEG" YUV ranges
Definition: pixfmt.h:535
A list of supported channel layouts.
Definition: formats.h:85
void av_get_channel_layout_string(char *buf, int buf_size, int nb_channels, uint64_t channel_layout)
Return a description of a channel layout.
static float bin_pos(const int bin, const int num_bins, const float sample_rate)
Orientation
#define sinf(x)
Definition: libm.h:419
sample_rate
static int config_output(AVFilterLink *outlink)
static void color_range(ShowSpectrumContext *s, int ch, float *yf, float *uf, float *vf)
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
static const struct ColorTable color_table[][8]
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:331
AVFilter ff_avf_showspectrum
static AVRational av_make_q(int num, int den)
Create an AVRational.
Definition: rational.h:71
FFT functions.
long long int64_t
Definition: coverity.c:34
AVRational sample_aspect_ratio
Sample aspect ratio for the video frame, 0/1 if unknown/unspecified.
Definition: frame.h:388
static av_always_inline float cbrtf(float x)
Definition: libm.h:61
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
double value
Definition: eval.c:98
Describe the class of an AVClass context structure.
Definition: log.h:67
Filter definition.
Definition: avfilter.h:144
int ff_outlink_get_status(AVFilterLink *link)
Get the status on an output link.
Definition: avfilter.c:1625
AVFILTER_DEFINE_CLASS(showspectrum)
Rational number (pair of numerator and denominator).
Definition: rational.h:58
const char * name
Filter name.
Definition: avfilter.h:148
offset must point to two consecutive integers
Definition: opt.h:233
DataMode
misc parsing utilities
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:350
enum MovChannelLayoutTag * layouts
Definition: mov_chan.c:434
#define FF_FILTER_FORWARD_STATUS(inlink, outlink)
Acknowledge the status on an input link and forward it to an output link.
Definition: filters.h:226
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:275
AVFilterFormats * ff_all_samplerates(void)
Definition: formats.c:439
int av_frame_make_writable(AVFrame *frame)
Ensure that the frame data is writable, avoiding data copy if possible.
Definition: frame.c:612
#define flags(name, subs,...)
Definition: cbs_av1.c:576
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
Definition: avfilter.h:378
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
int av_audio_fifo_write(AVAudioFifo *af, void **data, int nb_samples)
Write data to an AVAudioFifo.
Definition: audio_fifo.c:112
static av_cold void uninit(AVFilterContext *ctx)
int av_audio_fifo_drain(AVAudioFifo *af, int nb_samples)
Drain data from an AVAudioFifo.
Definition: audio_fifo.c:201
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
Definition: rational.h:159
static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples)
int
FFTSample im
Definition: avfft.h:38
if(ret< 0)
Definition: vf_mcdeint.c:279
static double c[64]
channel
Use these values when setting the channel map with ebur128_set_channel().
Definition: ebur128.h:39
FFTContext ** fft
Fast Fourier Transform context.
void ff_filter_set_ready(AVFilterContext *filter, unsigned priority)
Mark a filter ready and schedule it for activation.
Definition: avfilter.c:193
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
int den
Denominator.
Definition: rational.h:60
avfilter_execute_func * execute
Definition: internal.h:144
#define av_free(p)
Audio FIFO Buffer.
int(* plot_channel)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A list of supported formats for one end of a filter link.
Definition: formats.h:64
int av_audio_fifo_peek(AVAudioFifo *af, void **data, int nb_samples)
Peek data from an AVAudioFifo.
Definition: audio_fifo.c:138
AVFilter ff_avf_showspectrumpic
An instance of a filter.
Definition: avfilter.h:338
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:731
#define OFFSET(x)
FILE * out
Definition: movenc.c:54
#define av_freep(p)
#define M_PI
Definition: mathematics.h:52
static float log_scale(const float value, const float min, const float max)
static void scale_magnitudes(ShowSpectrumContext *s, float scale)
#define log10f(x)
Definition: libm.h:414
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
Definition: avfilter.c:407
formats
Definition: signature.h:48
static void pick_color(ShowSpectrumContext *s, float yf, float uf, float vf, float a, float *out)
internal API functions
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:347
int xpos
x position (current column)
float min
void av_fft_calc(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in av_fft_init().
Definition: avfft.c:43
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
static void clear_combine_buffer(ShowSpectrumContext *s, int size)
static float inv_log_scale(const float value, const float min, const float max)
mode
Use these values in ebur128_init (or&#39;ed).
Definition: ebur128.h:83
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:366
const AVFilter * filter
the AVFilter of which this is an instance
Definition: avfilter.h:341
for(j=16;j >0;--j)
FFTComplex ** fft_scratch
scratch buffers
CGA/EGA/VGA ROM font data.
int color_mode
display color scheme
DisplayMode