FFmpeg  4.3.8
indeo3.c
Go to the documentation of this file.
1 /*
2  * Indeo Video v3 compatible decoder
3  * Copyright (c) 2009 - 2011 Maxim Poliakovski
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * This is a decoder for Intel Indeo Video v3.
25  * It is based on vector quantization, run-length coding and motion compensation.
26  * Known container formats: .avi and .mov
27  * Known FOURCCs: 'IV31', 'IV32'
28  *
29  * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
30  */
31 
32 #include "libavutil/imgutils.h"
33 #include "libavutil/intreadwrite.h"
34 #include "avcodec.h"
35 #include "copy_block.h"
36 #include "bytestream.h"
37 #include "get_bits.h"
38 #include "hpeldsp.h"
39 #include "internal.h"
40 
41 #include "indeo3data.h"
42 
43 /* RLE opcodes. */
44 enum {
45  RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
46  RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
47  RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
48  RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
49  RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
50  RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
51  RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
52 };
53 
54 
55 /* Some constants for parsing frame bitstream flags. */
56 #define BS_8BIT_PEL (1 << 1) ///< 8-bit pixel bitdepth indicator
57 #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
58 #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
59 #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
60 #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
61 #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
62 
63 
64 typedef struct Plane {
66  uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
67  uint32_t width;
68  uint32_t height;
69  ptrdiff_t pitch;
70 } Plane;
71 
72 #define CELL_STACK_MAX 20
73 
74 typedef struct Cell {
75  int16_t xpos; ///< cell coordinates in 4x4 blocks
76  int16_t ypos;
77  int16_t width; ///< cell width in 4x4 blocks
78  int16_t height; ///< cell height in 4x4 blocks
79  uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
80  const int8_t *mv_ptr; ///< ptr to the motion vector if any
81 } Cell;
82 
83 typedef struct Indeo3DecodeContext {
86 
89  int skip_bits;
92  const int8_t *mc_vectors;
93  unsigned num_vectors; ///< number of motion vectors in mc_vectors
94 
95  int16_t width, height;
96  uint32_t frame_num; ///< current frame number (zero-based)
97  int data_size; ///< size of the frame data in bytes
98  uint16_t frame_flags; ///< frame properties
99  uint8_t cb_offset; ///< needed for selecting VQ tables
100  uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
107  const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
110 
111 
112 static uint8_t requant_tab[8][128];
113 
114 /*
115  * Build the static requantization table.
116  * This table is used to remap pixel values according to a specific
117  * quant index and thus avoid overflows while adding deltas.
118  */
119 static av_cold void build_requant_tab(void)
120 {
121  static const int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
122  static const int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
123 
124  int i, j, step;
125 
126  for (i = 0; i < 8; i++) {
127  step = i + 2;
128  for (j = 0; j < 128; j++)
129  requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
130  }
131 
132  /* some last elements calculated above will have values >= 128 */
133  /* pixel values shall never exceed 127 so set them to non-overflowing values */
134  /* according with the quantization step of the respective section */
135  requant_tab[0][127] = 126;
136  requant_tab[1][119] = 118;
137  requant_tab[1][120] = 118;
138  requant_tab[2][126] = 124;
139  requant_tab[2][127] = 124;
140  requant_tab[6][124] = 120;
141  requant_tab[6][125] = 120;
142  requant_tab[6][126] = 120;
143  requant_tab[6][127] = 120;
144 
145  /* Patch for compatibility with the Intel's binary decoders */
146  requant_tab[1][7] = 10;
147  requant_tab[4][8] = 10;
148 }
149 
150 
152 {
153  int p;
154 
155  ctx->width = ctx->height = 0;
156 
157  for (p = 0; p < 3; p++) {
158  av_freep(&ctx->planes[p].buffers[0]);
159  av_freep(&ctx->planes[p].buffers[1]);
160  ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
161  }
162 }
163 
164 
166  AVCodecContext *avctx, int luma_width, int luma_height)
167 {
168  int p, chroma_width, chroma_height;
169  int luma_size, chroma_size;
170  ptrdiff_t luma_pitch, chroma_pitch;
171 
172  luma_width = FFALIGN(luma_width , 2);
173  luma_height = FFALIGN(luma_height, 2);
174 
175  if (luma_width < 16 || luma_width > 640 ||
176  luma_height < 16 || luma_height > 480 ||
177  luma_width & 3 || luma_height & 3) {
178  av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
179  luma_width, luma_height);
180  return AVERROR_INVALIDDATA;
181  }
182 
183  ctx->width = luma_width ;
184  ctx->height = luma_height;
185 
186  chroma_width = FFALIGN(luma_width >> 2, 4);
187  chroma_height = FFALIGN(luma_height >> 2, 4);
188 
189  luma_pitch = FFALIGN(luma_width, 16);
190  chroma_pitch = FFALIGN(chroma_width, 16);
191 
192  /* Calculate size of the luminance plane. */
193  /* Add one line more for INTRA prediction. */
194  luma_size = luma_pitch * (luma_height + 1);
195 
196  /* Calculate size of a chrominance planes. */
197  /* Add one line more for INTRA prediction. */
198  chroma_size = chroma_pitch * (chroma_height + 1);
199 
200  /* allocate frame buffers */
201  for (p = 0; p < 3; p++) {
202  ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
203  ctx->planes[p].width = !p ? luma_width : chroma_width;
204  ctx->planes[p].height = !p ? luma_height : chroma_height;
205 
206  ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
207  ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
208 
209  if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1]) {
210  free_frame_buffers(ctx);
211  return AVERROR(ENOMEM);
212  }
213 
214  /* fill the INTRA prediction lines with the middle pixel value = 64 */
215  memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
216  memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
217 
218  /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
219  ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
220  ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
221  memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
222  memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
223  }
224 
225  return 0;
226 }
227 
228 /**
229  * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
230  * the cell(x, y) in the current frame.
231  *
232  * @param ctx pointer to the decoder context
233  * @param plane pointer to the plane descriptor
234  * @param cell pointer to the cell descriptor
235  */
237 {
238  int h, w, mv_x, mv_y, offset, offset_dst;
239  uint8_t *src, *dst;
240 
241  /* setup output and reference pointers */
242  offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
243  dst = plane->pixels[ctx->buf_sel] + offset_dst;
244  if(cell->mv_ptr){
245  mv_y = cell->mv_ptr[0];
246  mv_x = cell->mv_ptr[1];
247  }else
248  mv_x= mv_y= 0;
249 
250  /* -1 because there is an extra line on top for prediction */
251  if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
252  ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
253  ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
254  av_log(ctx->avctx, AV_LOG_ERROR,
255  "Motion vectors point out of the frame.\n");
256  return AVERROR_INVALIDDATA;
257  }
258 
259  offset = offset_dst + mv_y * plane->pitch + mv_x;
260  src = plane->pixels[ctx->buf_sel ^ 1] + offset;
261 
262  h = cell->height << 2;
263 
264  for (w = cell->width; w > 0;) {
265  /* copy using 16xH blocks */
266  if (!((cell->xpos << 2) & 15) && w >= 4) {
267  for (; w >= 4; src += 16, dst += 16, w -= 4)
268  ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h);
269  }
270 
271  /* copy using 8xH blocks */
272  if (!((cell->xpos << 2) & 7) && w >= 2) {
273  ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h);
274  w -= 2;
275  src += 8;
276  dst += 8;
277  } else if (w >= 1) {
278  ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h);
279  w--;
280  src += 4;
281  dst += 4;
282  }
283  }
284 
285  return 0;
286 }
287 
288 
289 /* Average 4/8 pixels at once without rounding using SWAR */
290 #define AVG_32(dst, src, ref) \
291  AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)
292 
293 #define AVG_64(dst, src, ref) \
294  AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
295 
296 
297 /*
298  * Replicate each even pixel as follows:
299  * ABCDEFGH -> AACCEEGG
300  */
301 static inline uint64_t replicate64(uint64_t a) {
302 #if HAVE_BIGENDIAN
303  a &= 0xFF00FF00FF00FF00ULL;
304  a |= a >> 8;
305 #else
306  a &= 0x00FF00FF00FF00FFULL;
307  a |= a << 8;
308 #endif
309  return a;
310 }
311 
312 static inline uint32_t replicate32(uint32_t a) {
313 #if HAVE_BIGENDIAN
314  a &= 0xFF00FF00UL;
315  a |= a >> 8;
316 #else
317  a &= 0x00FF00FFUL;
318  a |= a << 8;
319 #endif
320  return a;
321 }
322 
323 
324 /* Fill n lines with 64-bit pixel value pix */
325 static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
326  int32_t row_offset)
327 {
328  for (; n > 0; dst += row_offset, n--)
329  AV_WN64A(dst, pix);
330 }
331 
332 
333 /* Error codes for cell decoding. */
334 enum {
341 };
342 
343 
344 #define BUFFER_PRECHECK \
345 if (*data_ptr >= last_ptr) \
346  return IV3_OUT_OF_DATA; \
347 
348 #define RLE_BLOCK_COPY \
349  if (cell->mv_ptr || !skip_flag) \
350  copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
351 
352 #define RLE_BLOCK_COPY_8 \
353  pix64 = AV_RN64(ref);\
354  if (is_first_row) {/* special prediction case: top line of a cell */\
355  pix64 = replicate64(pix64);\
356  fill_64(dst + row_offset, pix64, 7, row_offset);\
357  AVG_64(dst, ref, dst + row_offset);\
358  } else \
359  fill_64(dst, pix64, 8, row_offset)
360 
361 #define RLE_LINES_COPY \
362  copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
363 
364 #define RLE_LINES_COPY_M10 \
365  pix64 = AV_RN64(ref);\
366  if (is_top_of_cell) {\
367  pix64 = replicate64(pix64);\
368  fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
369  AVG_64(dst, ref, dst + row_offset);\
370  } else \
371  fill_64(dst, pix64, num_lines << 1, row_offset)
372 
373 #define APPLY_DELTA_4 \
374  AV_WN16A(dst + line_offset ,\
375  (AV_RN16(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
376  AV_WN16A(dst + line_offset + 2,\
377  (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
378  if (mode >= 3) {\
379  if (is_top_of_cell && !cell->ypos) {\
380  AV_COPY32U(dst, dst + row_offset);\
381  } else {\
382  AVG_32(dst, ref, dst + row_offset);\
383  }\
384  }
385 
386 #define APPLY_DELTA_8 \
387  /* apply two 32-bit VQ deltas to next even line */\
388  if (is_top_of_cell) { \
389  AV_WN32A(dst + row_offset , \
390  (replicate32(AV_RN32(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
391  AV_WN32A(dst + row_offset + 4, \
392  (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
393  } else { \
394  AV_WN32A(dst + row_offset , \
395  (AV_RN32(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
396  AV_WN32A(dst + row_offset + 4, \
397  (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
398  } \
399  /* odd lines are not coded but rather interpolated/replicated */\
400  /* first line of the cell on the top of image? - replicate */\
401  /* otherwise - interpolate */\
402  if (is_top_of_cell && !cell->ypos) {\
403  AV_COPY64U(dst, dst + row_offset);\
404  } else \
405  AVG_64(dst, ref, dst + row_offset);
406 
407 
408 #define APPLY_DELTA_1011_INTER \
409  if (mode == 10) { \
410  AV_WN32A(dst , \
411  (AV_RN32(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
412  AV_WN32A(dst + 4 , \
413  (AV_RN32(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
414  AV_WN32A(dst + row_offset , \
415  (AV_RN32(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
416  AV_WN32A(dst + row_offset + 4, \
417  (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
418  } else { \
419  AV_WN16A(dst , \
420  (AV_RN16(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
421  AV_WN16A(dst + 2 , \
422  (AV_RN16(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
423  AV_WN16A(dst + row_offset , \
424  (AV_RN16(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
425  AV_WN16A(dst + row_offset + 2, \
426  (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
427  }
428 
429 
431  uint8_t *block, uint8_t *ref_block,
432  ptrdiff_t row_offset, int h_zoom, int v_zoom, int mode,
433  const vqEntry *delta[2], int swap_quads[2],
434  const uint8_t **data_ptr, const uint8_t *last_ptr)
435 {
436  int x, y, line, num_lines;
437  int rle_blocks = 0;
438  uint8_t code, *dst, *ref;
439  const vqEntry *delta_tab;
440  unsigned int dyad1, dyad2;
441  uint64_t pix64;
442  int skip_flag = 0, is_top_of_cell, is_first_row = 1;
443  int blk_row_offset, line_offset;
444 
445  blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
446  line_offset = v_zoom ? row_offset : 0;
447 
448  if (cell->height & v_zoom || cell->width & h_zoom)
449  return IV3_BAD_DATA;
450 
451  for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
452  for (x = 0; x < cell->width; x += 1 + h_zoom) {
453  ref = ref_block;
454  dst = block;
455 
456  if (rle_blocks > 0) {
457  if (mode <= 4) {
459  } else if (mode == 10 && !cell->mv_ptr) {
461  }
462  rle_blocks--;
463  } else {
464  for (line = 0; line < 4;) {
465  num_lines = 1;
466  is_top_of_cell = is_first_row && !line;
467 
468  /* select primary VQ table for odd, secondary for even lines */
469  if (mode <= 4)
470  delta_tab = delta[line & 1];
471  else
472  delta_tab = delta[1];
474  code = bytestream_get_byte(data_ptr);
475  if (code < 248) {
476  if (code < delta_tab->num_dyads) {
478  dyad1 = bytestream_get_byte(data_ptr);
479  dyad2 = code;
480  if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
481  return IV3_BAD_DATA;
482  } else {
483  /* process QUADS */
484  code -= delta_tab->num_dyads;
485  dyad1 = code / delta_tab->quad_exp;
486  dyad2 = code % delta_tab->quad_exp;
487  if (swap_quads[line & 1])
488  FFSWAP(unsigned int, dyad1, dyad2);
489  }
490  if (mode <= 4) {
492  } else if (mode == 10 && !cell->mv_ptr) {
494  } else {
496  }
497  } else {
498  /* process RLE codes */
499  switch (code) {
500  case RLE_ESC_FC:
501  skip_flag = 0;
502  rle_blocks = 1;
503  code = 253;
504  /* FALLTHROUGH */
505  case RLE_ESC_FF:
506  case RLE_ESC_FE:
507  case RLE_ESC_FD:
508  num_lines = 257 - code - line;
509  if (num_lines <= 0)
510  return IV3_BAD_RLE;
511  if (mode <= 4) {
513  } else if (mode == 10 && !cell->mv_ptr) {
515  }
516  break;
517  case RLE_ESC_FB:
519  code = bytestream_get_byte(data_ptr);
520  rle_blocks = (code & 0x1F) - 1; /* set block counter */
521  if (code >= 64 || rle_blocks < 0)
522  return IV3_BAD_COUNTER;
523  skip_flag = code & 0x20;
524  num_lines = 4 - line; /* enforce next block processing */
525  if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
526  if (mode <= 4) {
528  } else if (mode == 10 && !cell->mv_ptr) {
530  }
531  }
532  break;
533  case RLE_ESC_F9:
534  skip_flag = 1;
535  rle_blocks = 1;
536  /* FALLTHROUGH */
537  case RLE_ESC_FA:
538  if (line)
539  return IV3_BAD_RLE;
540  num_lines = 4; /* enforce next block processing */
541  if (cell->mv_ptr) {
542  if (mode <= 4) {
544  } else if (mode == 10 && !cell->mv_ptr) {
546  }
547  }
548  break;
549  default:
550  return IV3_UNSUPPORTED;
551  }
552  }
553 
554  line += num_lines;
555  ref += row_offset * (num_lines << v_zoom);
556  dst += row_offset * (num_lines << v_zoom);
557  }
558  }
559 
560  /* move to next horizontal block */
561  block += 4 << h_zoom;
562  ref_block += 4 << h_zoom;
563  }
564 
565  /* move to next line of blocks */
566  ref_block += blk_row_offset;
567  block += blk_row_offset;
568  }
569  return IV3_NOERR;
570 }
571 
572 
573 /**
574  * Decode a vector-quantized cell.
575  * It consists of several routines, each of which handles one or more "modes"
576  * with which a cell can be encoded.
577  *
578  * @param ctx pointer to the decoder context
579  * @param avctx ptr to the AVCodecContext
580  * @param plane pointer to the plane descriptor
581  * @param cell pointer to the cell descriptor
582  * @param data_ptr pointer to the compressed data
583  * @param last_ptr pointer to the last byte to catch reads past end of buffer
584  * @return number of consumed bytes or negative number in case of error
585  */
587  Plane *plane, Cell *cell, const uint8_t *data_ptr,
588  const uint8_t *last_ptr)
589 {
590  int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
591  int zoom_fac;
592  int offset, error = 0, swap_quads[2];
593  uint8_t code, *block, *ref_block = 0;
594  const vqEntry *delta[2];
595  const uint8_t *data_start = data_ptr;
596 
597  /* get coding mode and VQ table index from the VQ descriptor byte */
598  code = *data_ptr++;
599  mode = code >> 4;
600  vq_index = code & 0xF;
601 
602  /* setup output and reference pointers */
603  offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
604  block = plane->pixels[ctx->buf_sel] + offset;
605 
606  if (!cell->mv_ptr) {
607  /* use previous line as reference for INTRA cells */
608  ref_block = block - plane->pitch;
609  } else if (mode >= 10) {
610  /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
611  /* so we don't need to do data copying for each RLE code later */
612  int ret = copy_cell(ctx, plane, cell);
613  if (ret < 0)
614  return ret;
615  } else {
616  /* set the pointer to the reference pixels for modes 0-4 INTER */
617  mv_y = cell->mv_ptr[0];
618  mv_x = cell->mv_ptr[1];
619 
620  /* -1 because there is an extra line on top for prediction */
621  if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
622  ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
623  ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
624  av_log(ctx->avctx, AV_LOG_ERROR,
625  "Motion vectors point out of the frame.\n");
626  return AVERROR_INVALIDDATA;
627  }
628 
629  offset += mv_y * plane->pitch + mv_x;
630  ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
631  }
632 
633  /* select VQ tables as follows: */
634  /* modes 0 and 3 use only the primary table for all lines in a block */
635  /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
636  if (mode == 1 || mode == 4) {
637  code = ctx->alt_quant[vq_index];
638  prim_indx = (code >> 4) + ctx->cb_offset;
639  second_indx = (code & 0xF) + ctx->cb_offset;
640  } else {
641  vq_index += ctx->cb_offset;
642  prim_indx = second_indx = vq_index;
643  }
644 
645  if (prim_indx >= 24 || second_indx >= 24) {
646  av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
647  prim_indx, second_indx);
648  return AVERROR_INVALIDDATA;
649  }
650 
651  delta[0] = &vq_tab[second_indx];
652  delta[1] = &vq_tab[prim_indx];
653  swap_quads[0] = second_indx >= 16;
654  swap_quads[1] = prim_indx >= 16;
655 
656  /* requantize the prediction if VQ index of this cell differs from VQ index */
657  /* of the predicted cell in order to avoid overflows. */
658  if (vq_index >= 8 && ref_block) {
659  for (x = 0; x < cell->width << 2; x++)
660  ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
661  }
662 
663  error = IV3_NOERR;
664 
665  switch (mode) {
666  case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
667  case 1:
668  case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
669  case 4:
670  if (mode >= 3 && cell->mv_ptr) {
671  av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
672  return AVERROR_INVALIDDATA;
673  }
674 
675  zoom_fac = mode >= 3;
676  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
677  0, zoom_fac, mode, delta, swap_quads,
678  &data_ptr, last_ptr);
679  break;
680  case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
681  case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
682  if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
683  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
684  1, 1, mode, delta, swap_quads,
685  &data_ptr, last_ptr);
686  } else { /* mode 10 and 11 INTER processing */
687  if (mode == 11 && !cell->mv_ptr) {
688  av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
689  return AVERROR_INVALIDDATA;
690  }
691 
692  zoom_fac = mode == 10;
693  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
694  zoom_fac, 1, mode, delta, swap_quads,
695  &data_ptr, last_ptr);
696  }
697  break;
698  default:
699  av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
700  return AVERROR_INVALIDDATA;
701  }//switch mode
702 
703  switch (error) {
704  case IV3_BAD_RLE:
705  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
706  mode, data_ptr[-1]);
707  return AVERROR_INVALIDDATA;
708  case IV3_BAD_DATA:
709  av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
710  return AVERROR_INVALIDDATA;
711  case IV3_BAD_COUNTER:
712  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
713  return AVERROR_INVALIDDATA;
714  case IV3_UNSUPPORTED:
715  av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
716  return AVERROR_INVALIDDATA;
717  case IV3_OUT_OF_DATA:
718  av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
719  return AVERROR_INVALIDDATA;
720  }
721 
722  return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
723 }
724 
725 
726 /* Binary tree codes. */
727 enum {
728  H_SPLIT = 0,
729  V_SPLIT = 1,
732 };
733 
734 
735 #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
736 
737 #define UPDATE_BITPOS(n) \
738  ctx->skip_bits += (n); \
739  ctx->need_resync = 1
740 
741 #define RESYNC_BITSTREAM \
742  if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
743  skip_bits_long(&ctx->gb, ctx->skip_bits); \
744  ctx->skip_bits = 0; \
745  ctx->need_resync = 0; \
746  }
747 
748 #define CHECK_CELL \
749  if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
750  curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
751  av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
752  curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
753  return AVERROR_INVALIDDATA; \
754  }
755 
756 
758  Plane *plane, int code, Cell *ref_cell,
759  const int depth, const int strip_width)
760 {
761  Cell curr_cell;
762  int bytes_used, ret;
763 
764  if (depth <= 0) {
765  av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
766  return AVERROR_INVALIDDATA; // unwind recursion
767  }
768 
769  curr_cell = *ref_cell; // clone parent cell
770  if (code == H_SPLIT) {
771  SPLIT_CELL(ref_cell->height, curr_cell.height);
772  ref_cell->ypos += curr_cell.height;
773  ref_cell->height -= curr_cell.height;
774  if (ref_cell->height <= 0 || curr_cell.height <= 0)
775  return AVERROR_INVALIDDATA;
776  } else if (code == V_SPLIT) {
777  if (curr_cell.width > strip_width) {
778  /* split strip */
779  curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
780  } else
781  SPLIT_CELL(ref_cell->width, curr_cell.width);
782  ref_cell->xpos += curr_cell.width;
783  ref_cell->width -= curr_cell.width;
784  if (ref_cell->width <= 0 || curr_cell.width <= 0)
785  return AVERROR_INVALIDDATA;
786  }
787 
788  while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
790  switch (code = get_bits(&ctx->gb, 2)) {
791  case H_SPLIT:
792  case V_SPLIT:
793  if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
794  return AVERROR_INVALIDDATA;
795  break;
796  case INTRA_NULL:
797  if (!curr_cell.tree) { /* MC tree INTRA code */
798  curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
799  curr_cell.tree = 1; /* enter the VQ tree */
800  } else { /* VQ tree NULL code */
802  code = get_bits(&ctx->gb, 2);
803  if (code >= 2) {
804  av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
805  return AVERROR_INVALIDDATA;
806  }
807  if (code == 1)
808  av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
809 
810  CHECK_CELL
811  if (!curr_cell.mv_ptr)
812  return AVERROR_INVALIDDATA;
813 
814  ret = copy_cell(ctx, plane, &curr_cell);
815  return ret;
816  }
817  break;
818  case INTER_DATA:
819  if (!curr_cell.tree) { /* MC tree INTER code */
820  unsigned mv_idx;
821  /* get motion vector index and setup the pointer to the mv set */
822  if (!ctx->need_resync)
823  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
824  if (ctx->next_cell_data >= ctx->last_byte) {
825  av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
826  return AVERROR_INVALIDDATA;
827  }
828  mv_idx = *(ctx->next_cell_data++);
829  if (mv_idx >= ctx->num_vectors) {
830  av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
831  return AVERROR_INVALIDDATA;
832  }
833  curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
834  curr_cell.tree = 1; /* enter the VQ tree */
835  UPDATE_BITPOS(8);
836  } else { /* VQ tree DATA code */
837  if (!ctx->need_resync)
838  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
839 
840  CHECK_CELL
841  bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
842  ctx->next_cell_data, ctx->last_byte);
843  if (bytes_used < 0)
844  return AVERROR_INVALIDDATA;
845 
846  UPDATE_BITPOS(bytes_used << 3);
847  ctx->next_cell_data += bytes_used;
848  return 0;
849  }
850  break;
851  }
852  }//while
853 
854  return AVERROR_INVALIDDATA;
855 }
856 
857 
859  Plane *plane, const uint8_t *data, int32_t data_size,
860  int32_t strip_width)
861 {
862  Cell curr_cell;
863  unsigned num_vectors;
864 
865  /* each plane data starts with mc_vector_count field, */
866  /* an optional array of motion vectors followed by the vq data */
867  num_vectors = bytestream_get_le32(&data); data_size -= 4;
868  if (num_vectors > 256) {
869  av_log(ctx->avctx, AV_LOG_ERROR,
870  "Read invalid number of motion vectors %d\n", num_vectors);
871  return AVERROR_INVALIDDATA;
872  }
873  if (num_vectors * 2 > data_size)
874  return AVERROR_INVALIDDATA;
875 
876  ctx->num_vectors = num_vectors;
877  ctx->mc_vectors = num_vectors ? data : 0;
878 
879  /* init the bitreader */
880  init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
881  ctx->skip_bits = 0;
882  ctx->need_resync = 0;
883 
884  ctx->last_byte = data + data_size;
885 
886  /* initialize the 1st cell and set its dimensions to whole plane */
887  curr_cell.xpos = curr_cell.ypos = 0;
888  curr_cell.width = plane->width >> 2;
889  curr_cell.height = plane->height >> 2;
890  curr_cell.tree = 0; // we are in the MC tree now
891  curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
892 
893  return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
894 }
895 
896 
897 #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
898 
900  const uint8_t *buf, int buf_size)
901 {
902  GetByteContext gb;
903  const uint8_t *bs_hdr;
904  uint32_t frame_num, word2, check_sum, data_size;
905  int y_offset, u_offset, v_offset;
906  uint32_t starts[3], ends[3];
907  uint16_t height, width;
908  int i, j;
909 
910  bytestream2_init(&gb, buf, buf_size);
911 
912  /* parse and check the OS header */
913  frame_num = bytestream2_get_le32(&gb);
914  word2 = bytestream2_get_le32(&gb);
915  check_sum = bytestream2_get_le32(&gb);
916  data_size = bytestream2_get_le32(&gb);
917 
918  if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
919  av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
920  return AVERROR_INVALIDDATA;
921  }
922 
923  /* parse the bitstream header */
924  bs_hdr = gb.buffer;
925 
926  if (bytestream2_get_le16(&gb) != 32) {
927  av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
928  return AVERROR_INVALIDDATA;
929  }
930 
931  ctx->frame_num = frame_num;
932  ctx->frame_flags = bytestream2_get_le16(&gb);
933  ctx->data_size = (bytestream2_get_le32(&gb) + 7) >> 3;
934  ctx->cb_offset = bytestream2_get_byte(&gb);
935 
936  if (ctx->data_size == 16)
937  return 4;
938  ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
939 
940  bytestream2_skip(&gb, 3); // skip reserved byte and checksum
941 
942  /* check frame dimensions */
943  height = bytestream2_get_le16(&gb);
944  width = bytestream2_get_le16(&gb);
945  if (av_image_check_size(width, height, 0, avctx))
946  return AVERROR_INVALIDDATA;
947 
948  if (width != ctx->width || height != ctx->height) {
949  int res;
950 
951  ff_dlog(avctx, "Frame dimensions changed!\n");
952 
953  if (width < 16 || width > 640 ||
954  height < 16 || height > 480 ||
955  width & 3 || height & 3) {
956  av_log(avctx, AV_LOG_ERROR,
957  "Invalid picture dimensions: %d x %d!\n", width, height);
958  return AVERROR_INVALIDDATA;
959  }
960  free_frame_buffers(ctx);
961  if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
962  return res;
963  if ((res = ff_set_dimensions(avctx, width, height)) < 0)
964  return res;
965  }
966 
967  y_offset = bytestream2_get_le32(&gb);
968  v_offset = bytestream2_get_le32(&gb);
969  u_offset = bytestream2_get_le32(&gb);
970  bytestream2_skip(&gb, 4);
971 
972  /* unfortunately there is no common order of planes in the buffer */
973  /* so we use that sorting algo for determining planes data sizes */
974  starts[0] = y_offset;
975  starts[1] = v_offset;
976  starts[2] = u_offset;
977 
978  for (j = 0; j < 3; j++) {
979  ends[j] = ctx->data_size;
980  for (i = 2; i >= 0; i--)
981  if (starts[i] < ends[j] && starts[i] > starts[j])
982  ends[j] = starts[i];
983  }
984 
985  ctx->y_data_size = ends[0] - starts[0];
986  ctx->v_data_size = ends[1] - starts[1];
987  ctx->u_data_size = ends[2] - starts[2];
988  if (FFMIN3(y_offset, v_offset, u_offset) < 0 ||
989  FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
990  FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
991  FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
992  av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
993  return AVERROR_INVALIDDATA;
994  }
995 
996  ctx->y_data_ptr = bs_hdr + y_offset;
997  ctx->v_data_ptr = bs_hdr + v_offset;
998  ctx->u_data_ptr = bs_hdr + u_offset;
999  ctx->alt_quant = gb.buffer;
1000 
1001  if (ctx->data_size == 16) {
1002  av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
1003  return 16;
1004  }
1005 
1006  if (ctx->frame_flags & BS_8BIT_PEL) {
1007  avpriv_request_sample(avctx, "8-bit pixel format");
1008  return AVERROR_PATCHWELCOME;
1009  }
1010 
1011  if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
1012  avpriv_request_sample(avctx, "Halfpel motion vectors");
1013  return AVERROR_PATCHWELCOME;
1014  }
1015 
1016  return 0;
1017 }
1018 
1019 
1020 /**
1021  * Convert and output the current plane.
1022  * All pixel values will be upsampled by shifting right by one bit.
1023  *
1024  * @param[in] plane pointer to the descriptor of the plane being processed
1025  * @param[in] buf_sel indicates which frame buffer the input data stored in
1026  * @param[out] dst pointer to the buffer receiving converted pixels
1027  * @param[in] dst_pitch pitch for moving to the next y line
1028  * @param[in] dst_height output plane height
1029  */
1030 static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
1031  ptrdiff_t dst_pitch, int dst_height)
1032 {
1033  int x,y;
1034  const uint8_t *src = plane->pixels[buf_sel];
1035  ptrdiff_t pitch = plane->pitch;
1036 
1037  dst_height = FFMIN(dst_height, plane->height);
1038  for (y = 0; y < dst_height; y++) {
1039  /* convert four pixels at once using SWAR */
1040  for (x = 0; x < plane->width >> 2; x++) {
1041  AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
1042  src += 4;
1043  dst += 4;
1044  }
1045 
1046  for (x <<= 2; x < plane->width; x++)
1047  *dst++ = *src++ << 1;
1048 
1049  src += pitch - plane->width;
1050  dst += dst_pitch - plane->width;
1051  }
1052 }
1053 
1054 
1056 {
1057  Indeo3DecodeContext *ctx = avctx->priv_data;
1058 
1059  ctx->avctx = avctx;
1060  avctx->pix_fmt = AV_PIX_FMT_YUV410P;
1061 
1063 
1064  ff_hpeldsp_init(&ctx->hdsp, avctx->flags);
1065 
1066  return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
1067 }
1068 
1069 
1070 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
1071  AVPacket *avpkt)
1072 {
1073  Indeo3DecodeContext *ctx = avctx->priv_data;
1074  const uint8_t *buf = avpkt->data;
1075  int buf_size = avpkt->size;
1076  AVFrame *frame = data;
1077  int res;
1078 
1079  res = decode_frame_headers(ctx, avctx, buf, buf_size);
1080  if (res < 0)
1081  return res;
1082 
1083  /* skip sync(null) frames */
1084  if (res) {
1085  // we have processed 16 bytes but no data was decoded
1086  *got_frame = 0;
1087  return buf_size;
1088  }
1089 
1090  /* skip droppable INTER frames if requested */
1091  if (ctx->frame_flags & BS_NONREF &&
1092  (avctx->skip_frame >= AVDISCARD_NONREF))
1093  return 0;
1094 
1095  /* skip INTER frames if requested */
1096  if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
1097  return 0;
1098 
1099  /* use BS_BUFFER flag for buffer switching */
1100  ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
1101 
1102  if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
1103  return res;
1104 
1105  /* decode luma plane */
1106  if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
1107  return res;
1108 
1109  /* decode chroma planes */
1110  if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
1111  return res;
1112 
1113  if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
1114  return res;
1115 
1116  output_plane(&ctx->planes[0], ctx->buf_sel,
1117  frame->data[0], frame->linesize[0],
1118  avctx->height);
1119  output_plane(&ctx->planes[1], ctx->buf_sel,
1120  frame->data[1], frame->linesize[1],
1121  (avctx->height + 3) >> 2);
1122  output_plane(&ctx->planes[2], ctx->buf_sel,
1123  frame->data[2], frame->linesize[2],
1124  (avctx->height + 3) >> 2);
1125 
1126  *got_frame = 1;
1127 
1128  return buf_size;
1129 }
1130 
1131 
1133 {
1134  free_frame_buffers(avctx->priv_data);
1135 
1136  return 0;
1137 }
1138 
1140  .name = "indeo3",
1141  .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
1142  .type = AVMEDIA_TYPE_VIDEO,
1143  .id = AV_CODEC_ID_INDEO3,
1144  .priv_data_size = sizeof(Indeo3DecodeContext),
1145  .init = decode_init,
1146  .close = decode_close,
1147  .decode = decode_frame,
1148  .capabilities = AV_CODEC_CAP_DR1,
1149 };
static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane, Cell *cell, const uint8_t *data_ptr, const uint8_t *last_ptr)
Decode a vector-quantized cell.
Definition: indeo3.c:586
discard all frames except keyframes
Definition: avcodec.h:235
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
#define BS_8BIT_PEL
8-bit pixel bitdepth indicator
Definition: indeo3.c:56
const uint8_t * next_cell_data
Definition: indeo3.c:90
static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane, const uint8_t *data, int32_t data_size, int32_t strip_width)
Definition: indeo3.c:858
same as RLE_ESC_FA + do the same with next block
Definition: indeo3.c:45
int16_t xpos
cell coordinates in 4x4 blocks
Definition: indeo3.c:75
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:104
const uint8_t * y_data_ptr
Definition: indeo3.c:101
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
#define avpriv_request_sample(...)
int16_t height
cell height in 4x4 blocks
Definition: indeo3.c:78
int size
Definition: packet.h:356
uint8_t quad_exp
log2 of four-pixel deltas
Definition: indeo3data.h:327
uint8_t num_dyads
number of two-pixel deltas
Definition: indeo3data.h:326
apply null delta to all lines up to the 2nd line
Definition: indeo3.c:51
const uint8_t * v_data_ptr
Definition: indeo3.c:102
const uint8_t * buffer
Definition: get_bits.h:62
#define UPDATE_BITPOS(n)
Definition: indeo3.c:737
#define RLE_LINES_COPY_M10
Definition: indeo3.c:364
#define BS_BUFFER
indicates which of two frame buffers should be used
Definition: indeo3.c:61
#define RLE_BLOCK_COPY
Definition: indeo3.c:348
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:736
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:133
static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
Definition: indeo3.c:151
int32_t u_data_size
Definition: indeo3.c:106
static void error(const char *err)
uint32_t frame_num
current frame number (zero-based)
Definition: indeo3.c:96
AVCodec.
Definition: codec.h:190
#define AV_WN32A(p, v)
Definition: intreadwrite.h:538
uint8_t buf_sel
active frame buffer: 0 - primary, 1 -secondary
Definition: indeo3.c:100
int16_t height
Definition: indeo3.c:95
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
apply null delta to N blocks / skip N blocks
Definition: indeo3.c:47
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:2004
#define AV_RN32A(p)
Definition: intreadwrite.h:526
static int16_t block[64]
Definition: dct.c:115
#define BS_KEYFRAME
intra frame indicator
Definition: indeo3.c:57
uint8_t
#define av_cold
Definition: attributes.h:88
#define av_malloc(s)
float delta
AVCodecContext * avctx
Definition: indeo3.c:84
#define RLE_LINES_COPY
Definition: indeo3.c:361
#define CHECK_CELL
Definition: indeo3.c:748
static av_cold int decode_close(AVCodecContext *avctx)
Definition: indeo3.c:1132
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, ptrdiff_t dst_pitch, int dst_height)
Convert and output the current plane.
Definition: indeo3.c:1030
int data_size
size of the frame data in bytes
Definition: indeo3.c:97
int32_t y_data_size
Definition: indeo3.c:104
static AVFrame * frame
const char data[16]
Definition: mxf.c:91
ptrdiff_t pitch
Definition: indeo3.c:69
uint8_t * data
Definition: packet.h:355
apply null delta to all lines up to the 3rd line
Definition: indeo3.c:50
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
const uint8_t * buffer
Definition: bytestream.h:34
#define FFMIN3(a, b, c)
Definition: common.h:97
#define ff_dlog(a,...)
bitstream reader API header.
static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx, const uint8_t *buf, int buf_size)
Definition: indeo3.c:899
static uint64_t replicate64(uint64_t a)
Definition: indeo3.c:301
#define FFALIGN(x, a)
Definition: macros.h:48
#define OS_HDR_ID
Definition: indeo3.c:897
#define av_log(a,...)
const uint8_t * last_byte
Definition: indeo3.c:91
#define src
Definition: vp8dsp.c:254
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint32_t width
Definition: indeo3.c:67
uint16_t frame_flags
frame properties
Definition: indeo3.c:98
#define AVERROR(e)
Definition: error.h:43
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
Definition: bytestream.h:164
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:188
const uint8_t * code
Definition: spdifenc.c:413
uint8_t cb_offset
needed for selecting VQ tables
Definition: indeo3.c:99
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:606
Definition: graph2dot.c:48
static const vqEntry vq_tab[24]
Definition: indeo3data.h:330
const char * name
Name of the codec implementation.
Definition: codec.h:197
static const uint8_t offset[127][2]
Definition: vf_spp.c:93
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
Definition: hpeldsp.c:338
static const struct @315 planes[]
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:282
Half-pel DSP context.
Definition: hpeldsp.h:45
#define BS_NONREF
nonref (discardable) frame indicator
Definition: indeo3.c:60
uint8_t * pixels[2]
pointer to the actual pixel data of the buffers above
Definition: indeo3.c:66
#define APPLY_DELTA_8
Definition: indeo3.c:386
#define FFMIN(a, b)
Definition: common.h:96
In the ELBG jargon, a cell is the set of points that are closest to a codebook entry.
Definition: elbg.c:39
uint8_t * buffers[2]
Definition: indeo3.c:65
int width
picture width / height.
Definition: avcodec.h:699
uint8_t w
Definition: llviddspenc.c:38
#define BS_MV_X_HALF
horizontal mv halfpel resolution indicator
Definition: indeo3.c:59
const uint8_t * alt_quant
secondary VQ table set for the modes 1 and 4
Definition: indeo3.c:107
int32_t
AVFormatContext * ctx
Definition: movenc.c:48
static uint32_t replicate32(uint32_t a)
Definition: indeo3.c:312
#define BUFFER_PRECHECK
Definition: indeo3.c:344
#define RESYNC_BITSTREAM
Definition: indeo3.c:741
#define AV_WN64A(p, v)
Definition: intreadwrite.h:542
#define RLE_BLOCK_COPY_8
Definition: indeo3.c:352
const int8_t * mv_ptr
ptr to the motion vector if any
Definition: indeo3.c:80
#define APPLY_DELTA_4
Definition: indeo3.c:373
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
Half-pel DSP functions.
#define CELL_STACK_MAX
Definition: indeo3.c:72
static void fill_64(uint8_t *dst, const uint64_t pix, int32_t n, int32_t row_offset)
Definition: indeo3.c:325
Libavcodec external API header.
static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into the cell(x, y) in the current frame.
Definition: indeo3.c:236
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:331
same as RLE_ESC_FD + do the same with next block
Definition: indeo3.c:48
main external API structure.
Definition: avcodec.h:526
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1854
op_pixels_func put_pixels_tab[4][4]
Halfpel motion compensation with rounding (a+b+1)>>1.
Definition: hpeldsp.h:56
HpelDSPContext hdsp
Definition: indeo3.c:85
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
const int8_t * mc_vectors
Definition: indeo3.c:92
#define SPLIT_CELL(size, new_size)
Definition: indeo3.c:735
Definition: indeo3.c:74
int32_t v_data_size
Definition: indeo3.c:105
int16_t width
cell width in 4x4 blocks
Definition: indeo3.c:77
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:659
int16_t width
Definition: indeo3.c:95
static av_cold int decode_init(AVCodecContext *avctx)
Definition: indeo3.c:1055
int16_t ypos
Definition: indeo3.c:76
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane, int code, Cell *ref_cell, const int depth, const int strip_width)
Definition: indeo3.c:757
static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx, AVCodecContext *avctx, int luma_width, int luma_height)
Definition: indeo3.c:165
static av_cold void build_requant_tab(void)
Definition: indeo3.c:119
Plane planes[3]
Definition: indeo3.c:108
discard all non reference
Definition: avcodec.h:232
INTRA: skip block, INTER: copy data from reference.
Definition: indeo3.c:46
static uint8_t requant_tab[8][128]
Definition: indeo3.c:112
common internal api header.
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
apply null delta to all remaining lines of this block
Definition: indeo3.c:49
unsigned num_vectors
number of motion vectors in mc_vectors
Definition: indeo3.c:93
void * priv_data
Definition: avcodec.h:553
#define BS_MV_Y_HALF
vertical mv halfpel resolution indicator
Definition: indeo3.c:58
static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell, uint8_t *block, uint8_t *ref_block, ptrdiff_t row_offset, int h_zoom, int v_zoom, int mode, const vqEntry *delta[2], int swap_quads[2], const uint8_t **data_ptr, const uint8_t *last_ptr)
Definition: indeo3.c:430
GetBitContext gb
Definition: indeo3.c:87
AVCodec ff_indeo3_decoder
Definition: indeo3.c:1139
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: indeo3.c:1070
int width
Definition: cfhd.h:58
const uint8_t * u_data_ptr
Definition: indeo3.c:103
#define av_freep(p)
uint8_t tree
tree id: 0- MC tree, 1 - VQ tree
Definition: indeo3.c:79
#define FFSWAP(type, a, b)
Definition: common.h:99
int height
Definition: cfhd.h:59
This structure stores compressed data.
Definition: packet.h:332
mode
Use these values in ebur128_init (or&#39;ed).
Definition: ebur128.h:83
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:50
#define FFMAX3(a, b, c)
Definition: common.h:95
Definition: cfhd.h:57
#define APPLY_DELTA_1011_INTER
Definition: indeo3.c:408
uint32_t height
Definition: indeo3.c:68