FFmpeg  4.3.8
adpcm.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2001-2003 The FFmpeg project
3  *
4  * first version by Francois Revol (revol@free.fr)
5  * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6  * by Mike Melanson (melanson@pcisys.net)
7  * CD-ROM XA ADPCM codec by BERO
8  * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9  * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10  * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11  * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12  * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13  * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14  * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15  * Argonaut Games ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
16  * Simon & Schuster Interactive ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
17  * Ubisoft ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
18  * High Voltage Software ALP decoder by Zane van Iperen (zane@zanevaniperen.com)
19  * Cunning Developments decoder by Zane van Iperen (zane@zanevaniperen.com)
20  *
21  * This file is part of FFmpeg.
22  *
23  * FFmpeg is free software; you can redistribute it and/or
24  * modify it under the terms of the GNU Lesser General Public
25  * License as published by the Free Software Foundation; either
26  * version 2.1 of the License, or (at your option) any later version.
27  *
28  * FFmpeg is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
31  * Lesser General Public License for more details.
32  *
33  * You should have received a copy of the GNU Lesser General Public
34  * License along with FFmpeg; if not, write to the Free Software
35  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
36  */
37 #include "avcodec.h"
38 #include "get_bits.h"
39 #include "bytestream.h"
40 #include "adpcm.h"
41 #include "adpcm_data.h"
42 #include "internal.h"
43 
44 /**
45  * @file
46  * ADPCM decoders
47  * Features and limitations:
48  *
49  * Reference documents:
50  * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
51  * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
52  * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
53  * http://openquicktime.sourceforge.net/
54  * XAnim sources (xa_codec.c) http://xanim.polter.net/
55  * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
56  * SoX source code http://sox.sourceforge.net/
57  *
58  * CD-ROM XA:
59  * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
60  * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
61  * readstr http://www.geocities.co.jp/Playtown/2004/
62  */
63 
64 /* These are for CD-ROM XA ADPCM */
65 static const int8_t xa_adpcm_table[5][2] = {
66  { 0, 0 },
67  { 60, 0 },
68  { 115, -52 },
69  { 98, -55 },
70  { 122, -60 }
71 };
72 
73 static const int16_t ea_adpcm_table[] = {
74  0, 240, 460, 392,
75  0, 0, -208, -220,
76  0, 1, 3, 4,
77  7, 8, 10, 11,
78  0, -1, -3, -4
79 };
80 
81 // padded to zero where table size is less then 16
82 static const int8_t swf_index_tables[4][16] = {
83  /*2*/ { -1, 2 },
84  /*3*/ { -1, -1, 2, 4 },
85  /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
86  /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
87 };
88 
89 static const int8_t zork_index_table[8] = {
90  -1, -1, -1, 1, 4, 7, 10, 12,
91 };
92 
93 static const int8_t mtf_index_table[16] = {
94  8, 6, 4, 2, -1, -1, -1, -1,
95  -1, -1, -1, -1, 2, 4, 6, 8,
96 };
97 
98 /* end of tables */
99 
100 typedef struct ADPCMDecodeContext {
102  int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
105 
107 {
108  ADPCMDecodeContext *c = avctx->priv_data;
109  unsigned int min_channels = 1;
110  unsigned int max_channels = 2;
111 
112  switch(avctx->codec->id) {
114  max_channels = 1;
115  break;
118  min_channels = 2;
119  break;
126  max_channels = 6;
127  break;
129  min_channels = 2;
130  max_channels = 8;
131  if (avctx->channels & 1) {
132  avpriv_request_sample(avctx, "channel count %d\n", avctx->channels);
133  return AVERROR_PATCHWELCOME;
134  }
135  break;
137  max_channels = 8;
138  break;
142  max_channels = 14;
143  break;
144  }
145  if (avctx->channels < min_channels || avctx->channels > max_channels) {
146  av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
147  return AVERROR(EINVAL);
148  }
149 
150  switch(avctx->codec->id) {
152  c->status[0].step = c->status[1].step = 511;
153  break;
155  if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
156  return AVERROR_INVALIDDATA;
157  break;
159  if (avctx->extradata && avctx->extradata_size >= 8) {
160  c->status[0].predictor = av_clip_intp2(AV_RL32(avctx->extradata ), 18);
161  c->status[1].predictor = av_clip_intp2(AV_RL32(avctx->extradata + 4), 18);
162  }
163  break;
165  if (avctx->extradata && avctx->extradata_size >= 16) {
166  c->status[0].predictor = av_clip_intp2(AV_RL32(avctx->extradata + 0), 18);
167  c->status[0].step_index = av_clip(AV_RL32(avctx->extradata + 4), 0, 88);
168  c->status[1].predictor = av_clip_intp2(AV_RL32(avctx->extradata + 8), 18);
169  c->status[1].step_index = av_clip(AV_RL32(avctx->extradata + 12), 0, 88);
170  }
171  break;
173  if (avctx->extradata && avctx->extradata_size >= 2)
174  c->vqa_version = AV_RL16(avctx->extradata);
175  break;
177  if (avctx->bits_per_coded_sample != 4)
178  return AVERROR_INVALIDDATA;
179  break;
181  if (avctx->bits_per_coded_sample != 8)
182  return AVERROR_INVALIDDATA;
183  break;
184  default:
185  break;
186  }
187 
188  switch (avctx->codec->id) {
207  break;
209  avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
211  break;
213  avctx->sample_fmt = avctx->channels > 2 ? AV_SAMPLE_FMT_S16P :
215  break;
216  default:
217  avctx->sample_fmt = AV_SAMPLE_FMT_S16;
218  }
219 
220  return 0;
221 }
222 
223 static inline int16_t adpcm_agm_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
224 {
225  int delta, pred, step, add;
226 
227  pred = c->predictor;
228  delta = nibble & 7;
229  step = c->step;
230  add = (delta * 2 + 1) * step;
231  if (add < 0)
232  add = add + 7;
233 
234  if ((nibble & 8) == 0)
235  pred = av_clip(pred + (add >> 3), -32767, 32767);
236  else
237  pred = av_clip(pred - (add >> 3), -32767, 32767);
238 
239  switch (delta) {
240  case 7:
241  step *= 0x99;
242  break;
243  case 6:
244  c->step = av_clip(c->step * 2, 127, 24576);
245  c->predictor = pred;
246  return pred;
247  case 5:
248  step *= 0x66;
249  break;
250  case 4:
251  step *= 0x4d;
252  break;
253  default:
254  step *= 0x39;
255  break;
256  }
257 
258  if (step < 0)
259  step += 0x3f;
260 
261  c->step = step >> 6;
262  c->step = av_clip(c->step, 127, 24576);
263  c->predictor = pred;
264  return pred;
265 }
266 
267 static inline int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
268 {
269  int step_index;
270  int predictor;
271  int sign, delta, diff, step;
272 
273  step = ff_adpcm_step_table[c->step_index];
274  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
275  step_index = av_clip(step_index, 0, 88);
276 
277  sign = nibble & 8;
278  delta = nibble & 7;
279  /* perform direct multiplication instead of series of jumps proposed by
280  * the reference ADPCM implementation since modern CPUs can do the mults
281  * quickly enough */
282  diff = ((2 * delta + 1) * step) >> shift;
283  predictor = c->predictor;
284  if (sign) predictor -= diff;
285  else predictor += diff;
286 
287  c->predictor = av_clip_int16(predictor);
288  c->step_index = step_index;
289 
290  return (int16_t)c->predictor;
291 }
292 
293 static inline int16_t adpcm_ima_alp_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
294 {
295  int step_index;
296  int predictor;
297  int sign, delta, diff, step;
298 
299  step = ff_adpcm_step_table[c->step_index];
300  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
301  step_index = av_clip(step_index, 0, 88);
302 
303  sign = nibble & 8;
304  delta = nibble & 7;
305  diff = (delta * step) >> shift;
306  predictor = c->predictor;
307  if (sign) predictor -= diff;
308  else predictor += diff;
309 
310  c->predictor = av_clip_int16(predictor);
311  c->step_index = step_index;
312 
313  return (int16_t)c->predictor;
314 }
315 
316 static inline int16_t adpcm_ima_mtf_expand_nibble(ADPCMChannelStatus *c, int nibble)
317 {
318  int step_index, step, delta, predictor;
319 
320  step = ff_adpcm_step_table[c->step_index];
321 
322  delta = step * (2 * nibble - 15);
323  predictor = c->predictor + delta;
324 
325  step_index = c->step_index + mtf_index_table[(unsigned)nibble];
326  c->predictor = av_clip_int16(predictor >> 4);
327  c->step_index = av_clip(step_index, 0, 88);
328 
329  return (int16_t)c->predictor;
330 }
331 
332 static inline int16_t adpcm_ima_cunning_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
333 {
334  int step_index;
335  int predictor;
336  int step;
337 
338  nibble = sign_extend(nibble & 0xF, 4);
339 
341  step_index = c->step_index + ff_adpcm_ima_cunning_index_table[abs(nibble)];
342  step_index = av_clip(step_index, 0, 60);
343 
344  predictor = c->predictor + step * nibble;
345 
346  c->predictor = av_clip_int16(predictor);
347  c->step_index = step_index;
348 
349  return c->predictor;
350 }
351 
353 {
354  int nibble, step_index, predictor, sign, delta, diff, step, shift;
355 
356  shift = bps - 1;
357  nibble = get_bits_le(gb, bps),
358  step = ff_adpcm_step_table[c->step_index];
359  step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
360  step_index = av_clip(step_index, 0, 88);
361 
362  sign = nibble & (1 << shift);
363  delta = av_mod_uintp2(nibble, shift);
364  diff = ((2 * delta + 1) * step) >> shift;
365  predictor = c->predictor;
366  if (sign) predictor -= diff;
367  else predictor += diff;
368 
369  c->predictor = av_clip_int16(predictor);
370  c->step_index = step_index;
371 
372  return (int16_t)c->predictor;
373 }
374 
375 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble)
376 {
377  int step_index;
378  int predictor;
379  int diff, step;
380 
381  step = ff_adpcm_step_table[c->step_index];
382  step_index = c->step_index + ff_adpcm_index_table[nibble];
383  step_index = av_clip(step_index, 0, 88);
384 
385  diff = step >> 3;
386  if (nibble & 4) diff += step;
387  if (nibble & 2) diff += step >> 1;
388  if (nibble & 1) diff += step >> 2;
389 
390  if (nibble & 8)
391  predictor = c->predictor - diff;
392  else
393  predictor = c->predictor + diff;
394 
395  c->predictor = av_clip_int16(predictor);
396  c->step_index = step_index;
397 
398  return c->predictor;
399 }
400 
401 static inline int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
402 {
403  int predictor;
404 
405  predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
406  predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
407 
408  c->sample2 = c->sample1;
409  c->sample1 = av_clip_int16(predictor);
410  c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
411  if (c->idelta < 16) c->idelta = 16;
412  if (c->idelta > INT_MAX/768) {
413  av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
414  c->idelta = INT_MAX/768;
415  }
416 
417  return c->sample1;
418 }
419 
420 static inline int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
421 {
422  int step_index, predictor, sign, delta, diff, step;
423 
425  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
426  step_index = av_clip(step_index, 0, 48);
427 
428  sign = nibble & 8;
429  delta = nibble & 7;
430  diff = ((2 * delta + 1) * step) >> 3;
431  predictor = c->predictor;
432  if (sign) predictor -= diff;
433  else predictor += diff;
434 
435  c->predictor = av_clip_intp2(predictor, 11);
436  c->step_index = step_index;
437 
438  return c->predictor * 16;
439 }
440 
441 static inline int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
442 {
443  int sign, delta, diff;
444  int new_step;
445 
446  sign = nibble & 8;
447  delta = nibble & 7;
448  /* perform direct multiplication instead of series of jumps proposed by
449  * the reference ADPCM implementation since modern CPUs can do the mults
450  * quickly enough */
451  diff = ((2 * delta + 1) * c->step) >> 3;
452  /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
453  c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
454  c->predictor = av_clip_int16(c->predictor);
455  /* calculate new step and clamp it to range 511..32767 */
456  new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
457  c->step = av_clip(new_step, 511, 32767);
458 
459  return (int16_t)c->predictor;
460 }
461 
462 static inline int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
463 {
464  int sign, delta, diff;
465 
466  sign = nibble & (1<<(size-1));
467  delta = nibble & ((1<<(size-1))-1);
468  diff = delta << (7 + c->step + shift);
469 
470  /* clamp result */
471  c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
472 
473  /* calculate new step */
474  if (delta >= (2*size - 3) && c->step < 3)
475  c->step++;
476  else if (delta == 0 && c->step > 0)
477  c->step--;
478 
479  return (int16_t) c->predictor;
480 }
481 
483 {
484  if(!c->step) {
485  c->predictor = 0;
486  c->step = 127;
487  }
488 
489  c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
490  c->predictor = av_clip_int16(c->predictor);
491  c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
492  c->step = av_clip(c->step, 127, 24576);
493  return c->predictor;
494 }
495 
496 static inline int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
497 {
498  c->predictor += ff_adpcm_mtaf_stepsize[c->step][nibble];
499  c->predictor = av_clip_int16(c->predictor);
500  c->step += ff_adpcm_index_table[nibble];
501  c->step = av_clip_uintp2(c->step, 5);
502  return c->predictor;
503 }
504 
505 static inline int16_t adpcm_zork_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
506 {
507  int16_t index = c->step_index;
508  uint32_t lookup_sample = ff_adpcm_step_table[index];
509  int32_t sample = 0;
510 
511  if (nibble & 0x40)
512  sample += lookup_sample;
513  if (nibble & 0x20)
514  sample += lookup_sample >> 1;
515  if (nibble & 0x10)
516  sample += lookup_sample >> 2;
517  if (nibble & 0x08)
518  sample += lookup_sample >> 3;
519  if (nibble & 0x04)
520  sample += lookup_sample >> 4;
521  if (nibble & 0x02)
522  sample += lookup_sample >> 5;
523  if (nibble & 0x01)
524  sample += lookup_sample >> 6;
525  if (nibble & 0x80)
526  sample = -sample;
527 
528  sample += c->predictor;
529  sample = av_clip_int16(sample);
530 
531  index += zork_index_table[(nibble >> 4) & 7];
532  index = av_clip(index, 0, 88);
533 
534  c->predictor = sample;
535  c->step_index = index;
536 
537  return sample;
538 }
539 
540 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
541  const uint8_t *in, ADPCMChannelStatus *left,
542  ADPCMChannelStatus *right, int channels, int sample_offset)
543 {
544  int i, j;
545  int shift,filter,f0,f1;
546  int s_1,s_2;
547  int d,s,t;
548 
549  out0 += sample_offset;
550  if (channels == 1)
551  out1 = out0 + 28;
552  else
553  out1 += sample_offset;
554 
555  for(i=0;i<4;i++) {
556  shift = 12 - (in[4+i*2] & 15);
557  filter = in[4+i*2] >> 4;
558  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
559  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
560  filter=0;
561  }
562  if (shift < 0) {
563  avpriv_request_sample(avctx, "unknown XA-ADPCM shift %d", shift);
564  shift = 0;
565  }
566  f0 = xa_adpcm_table[filter][0];
567  f1 = xa_adpcm_table[filter][1];
568 
569  s_1 = left->sample1;
570  s_2 = left->sample2;
571 
572  for(j=0;j<28;j++) {
573  d = in[16+i+j*4];
574 
575  t = sign_extend(d, 4);
576  s = t*(1<<shift) + ((s_1*f0 + s_2*f1+32)>>6);
577  s_2 = s_1;
578  s_1 = av_clip_int16(s);
579  out0[j] = s_1;
580  }
581 
582  if (channels == 2) {
583  left->sample1 = s_1;
584  left->sample2 = s_2;
585  s_1 = right->sample1;
586  s_2 = right->sample2;
587  }
588 
589  shift = 12 - (in[5+i*2] & 15);
590  filter = in[5+i*2] >> 4;
591  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table) || shift < 0) {
592  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
593  filter=0;
594  }
595  if (shift < 0) {
596  avpriv_request_sample(avctx, "unknown XA-ADPCM shift %d", shift);
597  shift = 0;
598  }
599 
600  f0 = xa_adpcm_table[filter][0];
601  f1 = xa_adpcm_table[filter][1];
602 
603  for(j=0;j<28;j++) {
604  d = in[16+i+j*4];
605 
606  t = sign_extend(d >> 4, 4);
607  s = t*(1<<shift) + ((s_1*f0 + s_2*f1+32)>>6);
608  s_2 = s_1;
609  s_1 = av_clip_int16(s);
610  out1[j] = s_1;
611  }
612 
613  if (channels == 2) {
614  right->sample1 = s_1;
615  right->sample2 = s_2;
616  } else {
617  left->sample1 = s_1;
618  left->sample2 = s_2;
619  }
620 
621  out0 += 28 * (3 - channels);
622  out1 += 28 * (3 - channels);
623  }
624 
625  return 0;
626 }
627 
628 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
629 {
630  ADPCMDecodeContext *c = avctx->priv_data;
631  GetBitContext gb;
632  const int8_t *table;
633  int k0, signmask, nb_bits, count;
634  int size = buf_size*8;
635  int i;
636 
637  init_get_bits(&gb, buf, size);
638 
639  //read bits & initial values
640  nb_bits = get_bits(&gb, 2)+2;
641  table = swf_index_tables[nb_bits-2];
642  k0 = 1 << (nb_bits-2);
643  signmask = 1 << (nb_bits-1);
644 
645  while (get_bits_count(&gb) <= size - 22*avctx->channels) {
646  for (i = 0; i < avctx->channels; i++) {
647  *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
648  c->status[i].step_index = get_bits(&gb, 6);
649  }
650 
651  for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
652  int i;
653 
654  for (i = 0; i < avctx->channels; i++) {
655  // similar to IMA adpcm
656  int delta = get_bits(&gb, nb_bits);
657  int step = ff_adpcm_step_table[c->status[i].step_index];
658  int vpdiff = 0; // vpdiff = (delta+0.5)*step/4
659  int k = k0;
660 
661  do {
662  if (delta & k)
663  vpdiff += step;
664  step >>= 1;
665  k >>= 1;
666  } while(k);
667  vpdiff += step;
668 
669  if (delta & signmask)
670  c->status[i].predictor -= vpdiff;
671  else
672  c->status[i].predictor += vpdiff;
673 
674  c->status[i].step_index += table[delta & (~signmask)];
675 
676  c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
677  c->status[i].predictor = av_clip_int16(c->status[i].predictor);
678 
679  *samples++ = c->status[i].predictor;
680  }
681  }
682  }
683 }
684 
685 static inline int16_t adpcm_argo_expand_nibble(ADPCMChannelStatus *cs, int nibble, int control, int shift)
686 {
687  int sample = nibble * (1 << shift);
688 
689  if (control & 0x04)
690  sample += (8 * cs->sample1) - (4 * cs->sample2);
691  else
692  sample += 4 * cs->sample1;
693 
694  sample = av_clip_int16(sample >> 2);
695 
696  cs->sample2 = cs->sample1;
697  cs->sample1 = sample;
698 
699  return sample;
700 }
701 
702 /**
703  * Get the number of samples (per channel) that will be decoded from the packet.
704  * In one case, this is actually the maximum number of samples possible to
705  * decode with the given buf_size.
706  *
707  * @param[out] coded_samples set to the number of samples as coded in the
708  * packet, or 0 if the codec does not encode the
709  * number of samples in each frame.
710  * @param[out] approx_nb_samples set to non-zero if the number of samples
711  * returned is an approximation.
712  */
714  int buf_size, int *coded_samples, int *approx_nb_samples)
715 {
716  ADPCMDecodeContext *s = avctx->priv_data;
717  int nb_samples = 0;
718  int ch = avctx->channels;
719  int has_coded_samples = 0;
720  int header_size;
721 
722  *coded_samples = 0;
723  *approx_nb_samples = 0;
724 
725  if(ch <= 0)
726  return 0;
727 
728  switch (avctx->codec->id) {
729  /* constant, only check buf_size */
731  if (buf_size < 76 * ch)
732  return 0;
733  nb_samples = 128;
734  break;
736  if (buf_size < 34 * ch)
737  return 0;
738  nb_samples = 64;
739  break;
741  if (buf_size < 17 * ch)
742  return 0;
743  nb_samples = 32;
744  break;
745  /* simple 4-bit adpcm */
758  nb_samples = buf_size * 2 / ch;
759  break;
760  }
761  if (nb_samples)
762  return nb_samples;
763 
764  /* simple 4-bit adpcm, with header */
765  header_size = 0;
766  switch (avctx->codec->id) {
770  case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
771  case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
772  case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
773  }
774  if (header_size > 0)
775  return (buf_size - header_size) * 2 / ch;
776 
777  /* more complex formats */
778  switch (avctx->codec->id) {
780  has_coded_samples = 1;
781  *coded_samples = bytestream2_get_le32(gb);
782  *coded_samples -= *coded_samples % 28;
783  nb_samples = (buf_size - 12) / 30 * 28;
784  break;
786  has_coded_samples = 1;
787  *coded_samples = bytestream2_get_le32(gb);
788  nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
789  break;
791  nb_samples = (buf_size - ch) / ch * 2;
792  break;
796  /* maximum number of samples */
797  /* has internal offsets and a per-frame switch to signal raw 16-bit */
798  has_coded_samples = 1;
799  switch (avctx->codec->id) {
801  header_size = 4 + 9 * ch;
802  *coded_samples = bytestream2_get_le32(gb);
803  break;
805  header_size = 4 + 5 * ch;
806  *coded_samples = bytestream2_get_le32(gb);
807  break;
809  header_size = 4 + 5 * ch;
810  *coded_samples = bytestream2_get_be32(gb);
811  break;
812  }
813  *coded_samples -= *coded_samples % 28;
814  nb_samples = (buf_size - header_size) * 2 / ch;
815  nb_samples -= nb_samples % 28;
816  *approx_nb_samples = 1;
817  break;
819  if (avctx->block_align > 0)
820  buf_size = FFMIN(buf_size, avctx->block_align);
821  nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
822  break;
824  if (avctx->block_align > 0)
825  buf_size = FFMIN(buf_size, avctx->block_align);
826  if (buf_size < 4 * ch)
827  return AVERROR_INVALIDDATA;
828  nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
829  break;
831  if (avctx->block_align > 0)
832  buf_size = FFMIN(buf_size, avctx->block_align);
833  nb_samples = (buf_size - 4 * ch) * 2 / ch;
834  break;
836  {
837  int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
838  int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
839  if (avctx->block_align > 0)
840  buf_size = FFMIN(buf_size, avctx->block_align);
841  if (buf_size < 4 * ch)
842  return AVERROR_INVALIDDATA;
843  nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
844  break;
845  }
847  if (avctx->block_align > 0)
848  buf_size = FFMIN(buf_size, avctx->block_align);
849  nb_samples = (buf_size - 6 * ch) * 2 / ch;
850  break;
852  if (avctx->block_align > 0)
853  buf_size = FFMIN(buf_size, avctx->block_align);
854  nb_samples = (buf_size - 16 * (ch / 2)) * 2 / ch;
855  break;
859  {
860  int samples_per_byte;
861  switch (avctx->codec->id) {
862  case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
863  case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
864  case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
865  }
866  if (!s->status[0].step_index) {
867  if (buf_size < ch)
868  return AVERROR_INVALIDDATA;
869  nb_samples++;
870  buf_size -= ch;
871  }
872  nb_samples += buf_size * samples_per_byte / ch;
873  break;
874  }
876  {
877  int buf_bits = buf_size * 8 - 2;
878  int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
879  int block_hdr_size = 22 * ch;
880  int block_size = block_hdr_size + nbits * ch * 4095;
881  int nblocks = buf_bits / block_size;
882  int bits_left = buf_bits - nblocks * block_size;
883  nb_samples = nblocks * 4096;
884  if (bits_left >= block_hdr_size)
885  nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
886  break;
887  }
890  if (avctx->extradata) {
891  nb_samples = buf_size * 14 / (8 * ch);
892  break;
893  }
894  has_coded_samples = 1;
895  bytestream2_skip(gb, 4); // channel size
896  *coded_samples = (avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE) ?
897  bytestream2_get_le32(gb) :
898  bytestream2_get_be32(gb);
899  buf_size -= 8 + 36 * ch;
900  buf_size /= ch;
901  nb_samples = buf_size / 8 * 14;
902  if (buf_size % 8 > 1)
903  nb_samples += (buf_size % 8 - 1) * 2;
904  *approx_nb_samples = 1;
905  break;
907  nb_samples = buf_size / (9 * ch) * 16;
908  break;
910  nb_samples = (buf_size / 128) * 224 / ch;
911  break;
914  nb_samples = buf_size / (16 * ch) * 28;
915  break;
917  nb_samples = buf_size / ch;
918  break;
919  }
920 
921  /* validate coded sample count */
922  if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
923  return AVERROR_INVALIDDATA;
924 
925  return nb_samples;
926 }
927 
928 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
929  int *got_frame_ptr, AVPacket *avpkt)
930 {
931  AVFrame *frame = data;
932  const uint8_t *buf = avpkt->data;
933  int buf_size = avpkt->size;
934  ADPCMDecodeContext *c = avctx->priv_data;
935  ADPCMChannelStatus *cs;
936  int n, m, channel, i;
937  int16_t *samples;
938  int16_t **samples_p;
939  int st; /* stereo */
940  int count1, count2;
941  int nb_samples, coded_samples, approx_nb_samples, ret;
942  GetByteContext gb;
943 
944  bytestream2_init(&gb, buf, buf_size);
945  nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
946  if (nb_samples <= 0) {
947  av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
948  return AVERROR_INVALIDDATA;
949  }
950 
951  /* get output buffer */
952  frame->nb_samples = nb_samples;
953  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
954  return ret;
955  samples = (int16_t *)frame->data[0];
956  samples_p = (int16_t **)frame->extended_data;
957 
958  /* use coded_samples when applicable */
959  /* it is always <= nb_samples, so the output buffer will be large enough */
960  if (coded_samples) {
961  if (!approx_nb_samples && coded_samples != nb_samples)
962  av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
963  frame->nb_samples = nb_samples = coded_samples;
964  }
965 
966  st = avctx->channels == 2 ? 1 : 0;
967 
968  switch(avctx->codec->id) {
970  /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
971  Channel data is interleaved per-chunk. */
972  for (channel = 0; channel < avctx->channels; channel++) {
973  int predictor;
974  int step_index;
975  cs = &(c->status[channel]);
976  /* (pppppp) (piiiiiii) */
977 
978  /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
979  predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
980  step_index = predictor & 0x7F;
981  predictor &= ~0x7F;
982 
983  if (cs->step_index == step_index) {
984  int diff = predictor - cs->predictor;
985  if (diff < 0)
986  diff = - diff;
987  if (diff > 0x7f)
988  goto update;
989  } else {
990  update:
991  cs->step_index = step_index;
992  cs->predictor = predictor;
993  }
994 
995  if (cs->step_index > 88u){
996  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
997  channel, cs->step_index);
998  return AVERROR_INVALIDDATA;
999  }
1000 
1001  samples = samples_p[channel];
1002 
1003  for (m = 0; m < 64; m += 2) {
1004  int byte = bytestream2_get_byteu(&gb);
1005  samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F);
1006  samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 );
1007  }
1008  }
1009  break;
1011  for(i=0; i<avctx->channels; i++){
1012  cs = &(c->status[i]);
1013  cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
1014 
1015  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1016  if (cs->step_index > 88u){
1017  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1018  i, cs->step_index);
1019  return AVERROR_INVALIDDATA;
1020  }
1021  }
1022 
1023  if (avctx->bits_per_coded_sample != 4) {
1024  int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
1025  int block_size = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
1027  GetBitContext g;
1028 
1029  for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
1030  for (i = 0; i < avctx->channels; i++) {
1031  int j;
1032 
1033  cs = &c->status[i];
1034  samples = &samples_p[i][1 + n * samples_per_block];
1035  for (j = 0; j < block_size; j++) {
1036  temp[j] = buf[4 * avctx->channels + block_size * n * avctx->channels +
1037  (j % 4) + (j / 4) * (avctx->channels * 4) + i * 4];
1038  }
1039  ret = init_get_bits8(&g, (const uint8_t *)&temp, block_size);
1040  if (ret < 0)
1041  return ret;
1042  for (m = 0; m < samples_per_block; m++) {
1043  samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
1044  avctx->bits_per_coded_sample);
1045  }
1046  }
1047  }
1048  bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
1049  } else {
1050  for (n = 0; n < (nb_samples - 1) / 8; n++) {
1051  for (i = 0; i < avctx->channels; i++) {
1052  cs = &c->status[i];
1053  samples = &samples_p[i][1 + n * 8];
1054  for (m = 0; m < 8; m += 2) {
1055  int v = bytestream2_get_byteu(&gb);
1056  samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
1057  samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
1058  }
1059  }
1060  }
1061  }
1062  break;
1063  case AV_CODEC_ID_ADPCM_4XM:
1064  for (i = 0; i < avctx->channels; i++)
1065  c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1066 
1067  for (i = 0; i < avctx->channels; i++) {
1068  c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1069  if (c->status[i].step_index > 88u) {
1070  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1071  i, c->status[i].step_index);
1072  return AVERROR_INVALIDDATA;
1073  }
1074  }
1075 
1076  for (i = 0; i < avctx->channels; i++) {
1077  samples = (int16_t *)frame->data[i];
1078  cs = &c->status[i];
1079  for (n = nb_samples >> 1; n > 0; n--) {
1080  int v = bytestream2_get_byteu(&gb);
1081  *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
1082  *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
1083  }
1084  }
1085  break;
1086  case AV_CODEC_ID_ADPCM_AGM:
1087  for (i = 0; i < avctx->channels; i++)
1088  c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1089  for (i = 0; i < avctx->channels; i++)
1090  c->status[i].step = sign_extend(bytestream2_get_le16u(&gb), 16);
1091 
1092  for (n = 0; n < nb_samples >> (1 - st); n++) {
1093  int v = bytestream2_get_byteu(&gb);
1094  *samples++ = adpcm_agm_expand_nibble(&c->status[0], v & 0xF);
1095  *samples++ = adpcm_agm_expand_nibble(&c->status[st], v >> 4 );
1096  }
1097  break;
1098  case AV_CODEC_ID_ADPCM_MS:
1099  {
1100  int block_predictor;
1101 
1102  if (avctx->channels > 2) {
1103  for (channel = 0; channel < avctx->channels; channel++) {
1104  samples = samples_p[channel];
1105  block_predictor = bytestream2_get_byteu(&gb);
1106  if (block_predictor > 6) {
1107  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[%d] = %d\n",
1108  channel, block_predictor);
1109  return AVERROR_INVALIDDATA;
1110  }
1111  c->status[channel].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
1112  c->status[channel].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
1113  c->status[channel].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
1114  c->status[channel].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
1115  c->status[channel].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
1116  *samples++ = c->status[channel].sample2;
1117  *samples++ = c->status[channel].sample1;
1118  for(n = (nb_samples - 2) >> 1; n > 0; n--) {
1119  int byte = bytestream2_get_byteu(&gb);
1120  *samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte >> 4 );
1121  *samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte & 0x0F);
1122  }
1123  }
1124  } else {
1125  block_predictor = bytestream2_get_byteu(&gb);
1126  if (block_predictor > 6) {
1127  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
1128  block_predictor);
1129  return AVERROR_INVALIDDATA;
1130  }
1131  c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
1132  c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
1133  if (st) {
1134  block_predictor = bytestream2_get_byteu(&gb);
1135  if (block_predictor > 6) {
1136  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
1137  block_predictor);
1138  return AVERROR_INVALIDDATA;
1139  }
1140  c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
1141  c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
1142  }
1143  c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
1144  if (st){
1145  c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
1146  }
1147 
1148  c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
1149  if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
1150  c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
1151  if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
1152 
1153  *samples++ = c->status[0].sample2;
1154  if (st) *samples++ = c->status[1].sample2;
1155  *samples++ = c->status[0].sample1;
1156  if (st) *samples++ = c->status[1].sample1;
1157  for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
1158  int byte = bytestream2_get_byteu(&gb);
1159  *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
1160  *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
1161  }
1162  }
1163  break;
1164  }
1166  for (channel = 0; channel < avctx->channels; channel+=2) {
1167  bytestream2_skipu(&gb, 4);
1168  c->status[channel ].step = bytestream2_get_le16u(&gb) & 0x1f;
1169  c->status[channel + 1].step = bytestream2_get_le16u(&gb) & 0x1f;
1170  c->status[channel ].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1171  bytestream2_skipu(&gb, 2);
1172  c->status[channel + 1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1173  bytestream2_skipu(&gb, 2);
1174  for (n = 0; n < nb_samples; n+=2) {
1175  int v = bytestream2_get_byteu(&gb);
1176  samples_p[channel][n ] = adpcm_mtaf_expand_nibble(&c->status[channel], v & 0x0F);
1177  samples_p[channel][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel], v >> 4 );
1178  }
1179  for (n = 0; n < nb_samples; n+=2) {
1180  int v = bytestream2_get_byteu(&gb);
1181  samples_p[channel + 1][n ] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v & 0x0F);
1182  samples_p[channel + 1][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v >> 4 );
1183  }
1184  }
1185  break;
1187  for (channel = 0; channel < avctx->channels; channel++) {
1188  cs = &c->status[channel];
1189  cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
1190  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1191  if (cs->step_index > 88u){
1192  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1193  channel, cs->step_index);
1194  return AVERROR_INVALIDDATA;
1195  }
1196  }
1197  for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
1198  int v = bytestream2_get_byteu(&gb);
1199  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
1200  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1201  }
1202  break;
1204  {
1205  int last_byte = 0;
1206  int nibble;
1207  int decode_top_nibble_next = 0;
1208  int diff_channel;
1209  const int16_t *samples_end = samples + avctx->channels * nb_samples;
1210 
1211  bytestream2_skipu(&gb, 10);
1212  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1213  c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1214  c->status[0].step_index = bytestream2_get_byteu(&gb);
1215  c->status[1].step_index = bytestream2_get_byteu(&gb);
1216  if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
1217  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
1218  c->status[0].step_index, c->status[1].step_index);
1219  return AVERROR_INVALIDDATA;
1220  }
1221  /* sign extend the predictors */
1222  diff_channel = c->status[1].predictor;
1223 
1224  /* DK3 ADPCM support macro */
1225 #define DK3_GET_NEXT_NIBBLE() \
1226  if (decode_top_nibble_next) { \
1227  nibble = last_byte >> 4; \
1228  decode_top_nibble_next = 0; \
1229  } else { \
1230  last_byte = bytestream2_get_byteu(&gb); \
1231  nibble = last_byte & 0x0F; \
1232  decode_top_nibble_next = 1; \
1233  }
1234 
1235  while (samples < samples_end) {
1236 
1237  /* for this algorithm, c->status[0] is the sum channel and
1238  * c->status[1] is the diff channel */
1239 
1240  /* process the first predictor of the sum channel */
1242  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1243 
1244  /* process the diff channel predictor */
1246  adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1247 
1248  /* process the first pair of stereo PCM samples */
1249  diff_channel = (diff_channel + c->status[1].predictor) / 2;
1250  *samples++ = c->status[0].predictor + c->status[1].predictor;
1251  *samples++ = c->status[0].predictor - c->status[1].predictor;
1252 
1253  /* process the second predictor of the sum channel */
1255  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1256 
1257  /* process the second pair of stereo PCM samples */
1258  diff_channel = (diff_channel + c->status[1].predictor) / 2;
1259  *samples++ = c->status[0].predictor + c->status[1].predictor;
1260  *samples++ = c->status[0].predictor - c->status[1].predictor;
1261  }
1262 
1263  if ((bytestream2_tell(&gb) & 1))
1264  bytestream2_skip(&gb, 1);
1265  break;
1266  }
1268  for (channel = 0; channel < avctx->channels; channel++) {
1269  cs = &c->status[channel];
1270  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1271  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1272  if (cs->step_index > 88u){
1273  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1274  channel, cs->step_index);
1275  return AVERROR_INVALIDDATA;
1276  }
1277  }
1278 
1279  for (n = nb_samples >> (1 - st); n > 0; n--) {
1280  int v1, v2;
1281  int v = bytestream2_get_byteu(&gb);
1282  /* nibbles are swapped for mono */
1283  if (st) {
1284  v1 = v >> 4;
1285  v2 = v & 0x0F;
1286  } else {
1287  v2 = v >> 4;
1288  v1 = v & 0x0F;
1289  }
1290  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
1291  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
1292  }
1293  break;
1295  for (channel = 0; channel < avctx->channels; channel++) {
1296  cs = &c->status[channel];
1297  samples = samples_p[channel];
1298  bytestream2_skip(&gb, 4);
1299  for (n = 0; n < nb_samples; n += 2) {
1300  int v = bytestream2_get_byteu(&gb);
1301  *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
1302  *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
1303  }
1304  }
1305  break;
1307  for (n = nb_samples >> (1 - st); n > 0; n--) {
1308  int v = bytestream2_get_byteu(&gb);
1309  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
1310  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1311  }
1312  break;
1314  for (n = nb_samples >> (1 - st); n > 0; n--) {
1315  int v = bytestream2_get_byteu(&gb);
1316  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0], v >> 4 );
1317  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0x0F);
1318  }
1319  break;
1321  for (n = nb_samples / 2; n > 0; n--) {
1322  for (channel = 0; channel < avctx->channels; channel++) {
1323  int v = bytestream2_get_byteu(&gb);
1324  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[channel], v >> 4 );
1325  samples[st] = adpcm_ima_qt_expand_nibble(&c->status[channel], v & 0x0F);
1326  }
1327  samples += avctx->channels;
1328  }
1329  break;
1331  for (n = nb_samples / 2; n > 0; n--) {
1332  for (channel = 0; channel < avctx->channels; channel++) {
1333  int v = bytestream2_get_byteu(&gb);
1334  *samples++ = adpcm_ima_alp_expand_nibble(&c->status[channel], v >> 4 , 2);
1335  samples[st] = adpcm_ima_alp_expand_nibble(&c->status[channel], v & 0x0F, 2);
1336  }
1337  samples += avctx->channels;
1338  }
1339  break;
1341  for (n = 0; n < nb_samples / 2; n++) {
1342  int v = bytestream2_get_byteu(&gb);
1343  *samples++ = adpcm_ima_cunning_expand_nibble(&c->status[0], v & 0x0F);
1344  *samples++ = adpcm_ima_cunning_expand_nibble(&c->status[0], v >> 4);
1345  }
1346  break;
1348  for (n = nb_samples >> (1 - st); n > 0; n--) {
1349  int v = bytestream2_get_byteu(&gb);
1350  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
1351  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
1352  }
1353  break;
1355  for (channel = 0; channel < avctx->channels; channel++) {
1356  cs = &c->status[channel];
1357  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1358  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1359  if (cs->step_index > 88u){
1360  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1361  channel, cs->step_index);
1362  return AVERROR_INVALIDDATA;
1363  }
1364  }
1365  for (n = 0; n < nb_samples / 2; n++) {
1366  int byte[2];
1367 
1368  byte[0] = bytestream2_get_byteu(&gb);
1369  if (st)
1370  byte[1] = bytestream2_get_byteu(&gb);
1371  for(channel = 0; channel < avctx->channels; channel++) {
1372  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
1373  }
1374  for(channel = 0; channel < avctx->channels; channel++) {
1375  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3);
1376  }
1377  }
1378  break;
1380  if (c->vqa_version == 3) {
1381  for (channel = 0; channel < avctx->channels; channel++) {
1382  int16_t *smp = samples_p[channel];
1383 
1384  for (n = nb_samples / 2; n > 0; n--) {
1385  int v = bytestream2_get_byteu(&gb);
1386  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1387  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1388  }
1389  }
1390  } else {
1391  for (n = nb_samples / 2; n > 0; n--) {
1392  for (channel = 0; channel < avctx->channels; channel++) {
1393  int v = bytestream2_get_byteu(&gb);
1394  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1395  samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1396  }
1397  samples += avctx->channels;
1398  }
1399  }
1400  bytestream2_seek(&gb, 0, SEEK_END);
1401  break;
1402  case AV_CODEC_ID_ADPCM_XA:
1403  {
1404  int16_t *out0 = samples_p[0];
1405  int16_t *out1 = samples_p[1];
1406  int samples_per_block = 28 * (3 - avctx->channels) * 4;
1407  int sample_offset = 0;
1408  int bytes_remaining;
1409  while (bytestream2_get_bytes_left(&gb) >= 128) {
1410  if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1411  &c->status[0], &c->status[1],
1412  avctx->channels, sample_offset)) < 0)
1413  return ret;
1414  bytestream2_skipu(&gb, 128);
1415  sample_offset += samples_per_block;
1416  }
1417  /* Less than a full block of data left, e.g. when reading from
1418  * 2324 byte per sector XA; the remainder is padding */
1419  bytes_remaining = bytestream2_get_bytes_left(&gb);
1420  if (bytes_remaining > 0) {
1421  bytestream2_skip(&gb, bytes_remaining);
1422  }
1423  break;
1424  }
1426  for (i=0; i<=st; i++) {
1427  c->status[i].step_index = bytestream2_get_le32u(&gb);
1428  if (c->status[i].step_index > 88u) {
1429  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1430  i, c->status[i].step_index);
1431  return AVERROR_INVALIDDATA;
1432  }
1433  }
1434  for (i=0; i<=st; i++) {
1435  c->status[i].predictor = bytestream2_get_le32u(&gb);
1436  if (FFABS((int64_t)c->status[i].predictor) > (1<<16))
1437  return AVERROR_INVALIDDATA;
1438  }
1439 
1440  for (n = nb_samples >> (1 - st); n > 0; n--) {
1441  int byte = bytestream2_get_byteu(&gb);
1442  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
1443  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1444  }
1445  break;
1447  for (n = nb_samples >> (1 - st); n > 0; n--) {
1448  int byte = bytestream2_get_byteu(&gb);
1449  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
1450  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1451  }
1452  break;
1453  case AV_CODEC_ID_ADPCM_EA:
1454  {
1455  int previous_left_sample, previous_right_sample;
1456  int current_left_sample, current_right_sample;
1457  int next_left_sample, next_right_sample;
1458  int coeff1l, coeff2l, coeff1r, coeff2r;
1459  int shift_left, shift_right;
1460 
1461  /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1462  each coding 28 stereo samples. */
1463 
1464  if(avctx->channels != 2)
1465  return AVERROR_INVALIDDATA;
1466 
1467  current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1468  previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1469  current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1470  previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1471 
1472  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1473  int byte = bytestream2_get_byteu(&gb);
1474  coeff1l = ea_adpcm_table[ byte >> 4 ];
1475  coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
1476  coeff1r = ea_adpcm_table[ byte & 0x0F];
1477  coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1478 
1479  byte = bytestream2_get_byteu(&gb);
1480  shift_left = 20 - (byte >> 4);
1481  shift_right = 20 - (byte & 0x0F);
1482 
1483  for (count2 = 0; count2 < 28; count2++) {
1484  byte = bytestream2_get_byteu(&gb);
1485  next_left_sample = sign_extend(byte >> 4, 4) * (1 << shift_left);
1486  next_right_sample = sign_extend(byte, 4) * (1 << shift_right);
1487 
1488  next_left_sample = (next_left_sample +
1489  (current_left_sample * coeff1l) +
1490  (previous_left_sample * coeff2l) + 0x80) >> 8;
1491  next_right_sample = (next_right_sample +
1492  (current_right_sample * coeff1r) +
1493  (previous_right_sample * coeff2r) + 0x80) >> 8;
1494 
1495  previous_left_sample = current_left_sample;
1496  current_left_sample = av_clip_int16(next_left_sample);
1497  previous_right_sample = current_right_sample;
1498  current_right_sample = av_clip_int16(next_right_sample);
1499  *samples++ = current_left_sample;
1500  *samples++ = current_right_sample;
1501  }
1502  }
1503 
1504  bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1505 
1506  break;
1507  }
1509  {
1510  int coeff[2][2], shift[2];
1511 
1512  for(channel = 0; channel < avctx->channels; channel++) {
1513  int byte = bytestream2_get_byteu(&gb);
1514  for (i=0; i<2; i++)
1515  coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1516  shift[channel] = 20 - (byte & 0x0F);
1517  }
1518  for (count1 = 0; count1 < nb_samples / 2; count1++) {
1519  int byte[2];
1520 
1521  byte[0] = bytestream2_get_byteu(&gb);
1522  if (st) byte[1] = bytestream2_get_byteu(&gb);
1523  for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1524  for(channel = 0; channel < avctx->channels; channel++) {
1525  int sample = sign_extend(byte[channel] >> i, 4) * (1 << shift[channel]);
1526  sample = (sample +
1527  c->status[channel].sample1 * coeff[channel][0] +
1528  c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1530  c->status[channel].sample1 = av_clip_int16(sample);
1531  *samples++ = c->status[channel].sample1;
1532  }
1533  }
1534  }
1535  bytestream2_seek(&gb, 0, SEEK_END);
1536  break;
1537  }
1540  case AV_CODEC_ID_ADPCM_EA_R3: {
1541  /* channel numbering
1542  2chan: 0=fl, 1=fr
1543  4chan: 0=fl, 1=rl, 2=fr, 3=rr
1544  6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1545  const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1546  int previous_sample, current_sample, next_sample;
1547  int coeff1, coeff2;
1548  int shift;
1549  unsigned int channel;
1550  uint16_t *samplesC;
1551  int count = 0;
1552  int offsets[6];
1553 
1554  for (channel=0; channel<avctx->channels; channel++)
1555  offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1556  bytestream2_get_le32(&gb)) +
1557  (avctx->channels + 1) * 4;
1558 
1559  for (channel=0; channel<avctx->channels; channel++) {
1560  bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1561  samplesC = samples_p[channel];
1562 
1563  if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1564  current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1565  previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1566  } else {
1567  current_sample = c->status[channel].predictor;
1568  previous_sample = c->status[channel].prev_sample;
1569  }
1570 
1571  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1572  int byte = bytestream2_get_byte(&gb);
1573  if (byte == 0xEE) { /* only seen in R2 and R3 */
1574  current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1575  previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1576 
1577  for (count2=0; count2<28; count2++)
1578  *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1579  } else {
1580  coeff1 = ea_adpcm_table[ byte >> 4 ];
1581  coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1582  shift = 20 - (byte & 0x0F);
1583 
1584  for (count2=0; count2<28; count2++) {
1585  if (count2 & 1)
1586  next_sample = (unsigned)sign_extend(byte, 4) << shift;
1587  else {
1588  byte = bytestream2_get_byte(&gb);
1589  next_sample = (unsigned)sign_extend(byte >> 4, 4) << shift;
1590  }
1591 
1592  next_sample += (current_sample * coeff1) +
1593  (previous_sample * coeff2);
1594  next_sample = av_clip_int16(next_sample >> 8);
1595 
1596  previous_sample = current_sample;
1597  current_sample = next_sample;
1598  *samplesC++ = current_sample;
1599  }
1600  }
1601  }
1602  if (!count) {
1603  count = count1;
1604  } else if (count != count1) {
1605  av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1606  count = FFMAX(count, count1);
1607  }
1608 
1609  if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1610  c->status[channel].predictor = current_sample;
1611  c->status[channel].prev_sample = previous_sample;
1612  }
1613  }
1614 
1615  frame->nb_samples = count * 28;
1616  bytestream2_seek(&gb, 0, SEEK_END);
1617  break;
1618  }
1620  for (channel=0; channel<avctx->channels; channel++) {
1621  int coeff[2][4], shift[4];
1622  int16_t *s = samples_p[channel];
1623  for (n = 0; n < 4; n++, s += 32) {
1624  int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1625  for (i=0; i<2; i++)
1626  coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1627  s[0] = val & ~0x0F;
1628 
1629  val = sign_extend(bytestream2_get_le16u(&gb), 16);
1630  shift[n] = 20 - (val & 0x0F);
1631  s[1] = val & ~0x0F;
1632  }
1633 
1634  for (m=2; m<32; m+=2) {
1635  s = &samples_p[channel][m];
1636  for (n = 0; n < 4; n++, s += 32) {
1637  int level, pred;
1638  int byte = bytestream2_get_byteu(&gb);
1639 
1640  level = sign_extend(byte >> 4, 4) * (1 << shift[n]);
1641  pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1642  s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1643 
1644  level = sign_extend(byte, 4) * (1 << shift[n]);
1645  pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1646  s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1647  }
1648  }
1649  }
1650  break;
1652  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1653  c->status[0].step_index = bytestream2_get_byteu(&gb);
1654  bytestream2_skipu(&gb, 5);
1655  if (c->status[0].step_index > 88u) {
1656  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1657  c->status[0].step_index);
1658  return AVERROR_INVALIDDATA;
1659  }
1660 
1661  for (n = nb_samples >> (1 - st); n > 0; n--) {
1662  int v = bytestream2_get_byteu(&gb);
1663 
1664  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1665  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1666  }
1667  break;
1669  for (i = 0; i < avctx->channels; i++) {
1670  c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1671  c->status[i].step_index = bytestream2_get_byteu(&gb);
1672  bytestream2_skipu(&gb, 1);
1673  if (c->status[i].step_index > 88u) {
1674  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1675  c->status[i].step_index);
1676  return AVERROR_INVALIDDATA;
1677  }
1678  }
1679 
1680  for (n = nb_samples >> (1 - st); n > 0; n--) {
1681  int v = bytestream2_get_byteu(&gb);
1682 
1683  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4 );
1684  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf);
1685  }
1686  break;
1687  case AV_CODEC_ID_ADPCM_CT:
1688  for (n = nb_samples >> (1 - st); n > 0; n--) {
1689  int v = bytestream2_get_byteu(&gb);
1690  *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1691  *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1692  }
1693  break;
1697  if (!c->status[0].step_index) {
1698  /* the first byte is a raw sample */
1699  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1700  if (st)
1701  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1702  c->status[0].step_index = 1;
1703  nb_samples--;
1704  }
1705  if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1706  for (n = nb_samples >> (1 - st); n > 0; n--) {
1707  int byte = bytestream2_get_byteu(&gb);
1708  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1709  byte >> 4, 4, 0);
1710  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1711  byte & 0x0F, 4, 0);
1712  }
1713  } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1714  for (n = (nb_samples<<st) / 3; n > 0; n--) {
1715  int byte = bytestream2_get_byteu(&gb);
1716  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1717  byte >> 5 , 3, 0);
1718  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1719  (byte >> 2) & 0x07, 3, 0);
1720  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1721  byte & 0x03, 2, 0);
1722  }
1723  } else {
1724  for (n = nb_samples >> (2 - st); n > 0; n--) {
1725  int byte = bytestream2_get_byteu(&gb);
1726  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1727  byte >> 6 , 2, 2);
1728  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1729  (byte >> 4) & 0x03, 2, 2);
1730  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1731  (byte >> 2) & 0x03, 2, 2);
1732  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1733  byte & 0x03, 2, 2);
1734  }
1735  }
1736  break;
1737  case AV_CODEC_ID_ADPCM_SWF:
1738  adpcm_swf_decode(avctx, buf, buf_size, samples);
1739  bytestream2_seek(&gb, 0, SEEK_END);
1740  break;
1742  for (n = nb_samples >> (1 - st); n > 0; n--) {
1743  int v = bytestream2_get_byteu(&gb);
1744  *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1745  *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1746  }
1747  break;
1749  if (!c->has_status) {
1750  for (channel = 0; channel < avctx->channels; channel++)
1751  c->status[channel].step = 0;
1752  c->has_status = 1;
1753  }
1754  for (channel = 0; channel < avctx->channels; channel++) {
1755  samples = samples_p[channel];
1756  for (n = nb_samples >> 1; n > 0; n--) {
1757  int v = bytestream2_get_byteu(&gb);
1758  *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v & 0x0F);
1759  *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v >> 4 );
1760  }
1761  }
1762  break;
1763  case AV_CODEC_ID_ADPCM_AFC:
1764  {
1765  int samples_per_block;
1766  int blocks;
1767 
1768  if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1769  samples_per_block = avctx->extradata[0] / 16;
1770  blocks = nb_samples / avctx->extradata[0];
1771  } else {
1772  samples_per_block = nb_samples / 16;
1773  blocks = 1;
1774  }
1775 
1776  for (m = 0; m < blocks; m++) {
1777  for (channel = 0; channel < avctx->channels; channel++) {
1778  int prev1 = c->status[channel].sample1;
1779  int prev2 = c->status[channel].sample2;
1780 
1781  samples = samples_p[channel] + m * 16;
1782  /* Read in every sample for this channel. */
1783  for (i = 0; i < samples_per_block; i++) {
1784  int byte = bytestream2_get_byteu(&gb);
1785  int scale = 1 << (byte >> 4);
1786  int index = byte & 0xf;
1787  int factor1 = ff_adpcm_afc_coeffs[0][index];
1788  int factor2 = ff_adpcm_afc_coeffs[1][index];
1789 
1790  /* Decode 16 samples. */
1791  for (n = 0; n < 16; n++) {
1792  int32_t sampledat;
1793 
1794  if (n & 1) {
1795  sampledat = sign_extend(byte, 4);
1796  } else {
1797  byte = bytestream2_get_byteu(&gb);
1798  sampledat = sign_extend(byte >> 4, 4);
1799  }
1800 
1801  sampledat = ((prev1 * factor1 + prev2 * factor2) >> 11) +
1802  sampledat * scale;
1803  *samples = av_clip_int16(sampledat);
1804  prev2 = prev1;
1805  prev1 = *samples++;
1806  }
1807  }
1808 
1809  c->status[channel].sample1 = prev1;
1810  c->status[channel].sample2 = prev2;
1811  }
1812  }
1813  bytestream2_seek(&gb, 0, SEEK_END);
1814  break;
1815  }
1816  case AV_CODEC_ID_ADPCM_THP:
1818  {
1819  int table[14][16];
1820  int ch;
1821 
1822 #define THP_GET16(g) \
1823  sign_extend( \
1824  avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \
1825  bytestream2_get_le16u(&(g)) : \
1826  bytestream2_get_be16u(&(g)), 16)
1827 
1828  if (avctx->extradata) {
1830  if (avctx->extradata_size < 32 * avctx->channels) {
1831  av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1832  return AVERROR_INVALIDDATA;
1833  }
1834 
1835  bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1836  for (i = 0; i < avctx->channels; i++)
1837  for (n = 0; n < 16; n++)
1838  table[i][n] = THP_GET16(tb);
1839  } else {
1840  for (i = 0; i < avctx->channels; i++)
1841  for (n = 0; n < 16; n++)
1842  table[i][n] = THP_GET16(gb);
1843 
1844  if (!c->has_status) {
1845  /* Initialize the previous sample. */
1846  for (i = 0; i < avctx->channels; i++) {
1847  c->status[i].sample1 = THP_GET16(gb);
1848  c->status[i].sample2 = THP_GET16(gb);
1849  }
1850  c->has_status = 1;
1851  } else {
1852  bytestream2_skip(&gb, avctx->channels * 4);
1853  }
1854  }
1855 
1856  for (ch = 0; ch < avctx->channels; ch++) {
1857  samples = samples_p[ch];
1858 
1859  /* Read in every sample for this channel. */
1860  for (i = 0; i < (nb_samples + 13) / 14; i++) {
1861  int byte = bytestream2_get_byteu(&gb);
1862  int index = (byte >> 4) & 7;
1863  unsigned int exp = byte & 0x0F;
1864  int64_t factor1 = table[ch][index * 2];
1865  int64_t factor2 = table[ch][index * 2 + 1];
1866 
1867  /* Decode 14 samples. */
1868  for (n = 0; n < 14 && (i * 14 + n < nb_samples); n++) {
1869  int32_t sampledat;
1870 
1871  if (n & 1) {
1872  sampledat = sign_extend(byte, 4);
1873  } else {
1874  byte = bytestream2_get_byteu(&gb);
1875  sampledat = sign_extend(byte >> 4, 4);
1876  }
1877 
1878  sampledat = ((c->status[ch].sample1 * factor1
1879  + c->status[ch].sample2 * factor2) >> 11) + sampledat * (1 << exp);
1880  *samples = av_clip_int16(sampledat);
1881  c->status[ch].sample2 = c->status[ch].sample1;
1882  c->status[ch].sample1 = *samples++;
1883  }
1884  }
1885  }
1886  break;
1887  }
1888  case AV_CODEC_ID_ADPCM_DTK:
1889  for (channel = 0; channel < avctx->channels; channel++) {
1890  samples = samples_p[channel];
1891 
1892  /* Read in every sample for this channel. */
1893  for (i = 0; i < nb_samples / 28; i++) {
1894  int byte, header;
1895  if (channel)
1896  bytestream2_skipu(&gb, 1);
1897  header = bytestream2_get_byteu(&gb);
1898  bytestream2_skipu(&gb, 3 - channel);
1899 
1900  /* Decode 28 samples. */
1901  for (n = 0; n < 28; n++) {
1902  int32_t sampledat, prev;
1903 
1904  switch (header >> 4) {
1905  case 1:
1906  prev = (c->status[channel].sample1 * 0x3c);
1907  break;
1908  case 2:
1909  prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1910  break;
1911  case 3:
1912  prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1913  break;
1914  default:
1915  prev = 0;
1916  }
1917 
1918  prev = av_clip_intp2((prev + 0x20) >> 6, 21);
1919 
1920  byte = bytestream2_get_byteu(&gb);
1921  if (!channel)
1922  sampledat = sign_extend(byte, 4);
1923  else
1924  sampledat = sign_extend(byte >> 4, 4);
1925 
1926  sampledat = ((sampledat * (1 << 12)) >> (header & 0xf)) * (1 << 6) + prev;
1927  *samples++ = av_clip_int16(sampledat >> 6);
1929  c->status[channel].sample1 = sampledat;
1930  }
1931  }
1932  if (!channel)
1933  bytestream2_seek(&gb, 0, SEEK_SET);
1934  }
1935  break;
1936  case AV_CODEC_ID_ADPCM_PSX:
1937  for (channel = 0; channel < avctx->channels; channel++) {
1938  samples = samples_p[channel];
1939 
1940  /* Read in every sample for this channel. */
1941  for (i = 0; i < nb_samples / 28; i++) {
1942  int filter, shift, flag, byte;
1943 
1944  filter = bytestream2_get_byteu(&gb);
1945  shift = filter & 0xf;
1946  filter = filter >> 4;
1947  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table))
1948  return AVERROR_INVALIDDATA;
1949  flag = bytestream2_get_byteu(&gb);
1950 
1951  /* Decode 28 samples. */
1952  for (n = 0; n < 28; n++) {
1953  int sample = 0, scale;
1954 
1955  if (flag < 0x07) {
1956  if (n & 1) {
1957  scale = sign_extend(byte >> 4, 4);
1958  } else {
1959  byte = bytestream2_get_byteu(&gb);
1960  scale = sign_extend(byte, 4);
1961  }
1962 
1963  scale = scale * (1 << 12);
1964  sample = (int)((scale >> shift) + (c->status[channel].sample1 * xa_adpcm_table[filter][0] + c->status[channel].sample2 * xa_adpcm_table[filter][1]) / 64);
1965  }
1966  *samples++ = av_clip_int16(sample);
1968  c->status[channel].sample1 = sample;
1969  }
1970  }
1971  }
1972  break;
1974  /*
1975  * The format of each block:
1976  * uint8_t left_control;
1977  * uint4_t left_samples[nb_samples];
1978  * ---- and if stereo ----
1979  * uint8_t right_control;
1980  * uint4_t right_samples[nb_samples];
1981  *
1982  * Format of the control byte:
1983  * MSB [SSSSDRRR] LSB
1984  * S = (Shift Amount - 2)
1985  * D = Decoder flag.
1986  * R = Reserved
1987  *
1988  * Each block relies on the previous two samples of each channel.
1989  * They should be 0 initially.
1990  */
1991  for (channel = 0; channel < avctx->channels; channel++) {
1992  int control, shift;
1993 
1994  samples = samples_p[channel];
1995  cs = c->status + channel;
1996 
1997  /* Get the control byte and decode the samples, 2 at a time. */
1998  control = bytestream2_get_byteu(&gb);
1999  shift = (control >> 4) + 2;
2000 
2001  for (n = 0; n < nb_samples / 2; n++) {
2002  int sample = bytestream2_get_byteu(&gb);
2003  *samples++ = adpcm_argo_expand_nibble(cs, sign_extend(sample >> 4, 4), control, shift);
2004  *samples++ = adpcm_argo_expand_nibble(cs, sign_extend(sample >> 0, 4), control, shift);
2005  }
2006  }
2007  break;
2009  if (!c->has_status) {
2010  for (channel = 0; channel < avctx->channels; channel++) {
2011  c->status[channel].predictor = 0;
2012  c->status[channel].step_index = 0;
2013  }
2014  c->has_status = 1;
2015  }
2016  for (n = 0; n < nb_samples * avctx->channels; n++) {
2017  int v = bytestream2_get_byteu(&gb);
2018  *samples++ = adpcm_zork_expand_nibble(&c->status[n % avctx->channels], v);
2019  }
2020  break;
2022  for (n = nb_samples / 2; n > 0; n--) {
2023  for (channel = 0; channel < avctx->channels; channel++) {
2024  int v = bytestream2_get_byteu(&gb);
2025  *samples++ = adpcm_ima_mtf_expand_nibble(&c->status[channel], v >> 4);
2026  samples[st] = adpcm_ima_mtf_expand_nibble(&c->status[channel], v & 0x0F);
2027  }
2028  samples += avctx->channels;
2029  }
2030  break;
2031  default:
2032  av_assert0(0); // unsupported codec_id should not happen
2033  }
2034 
2035  if (avpkt->size && bytestream2_tell(&gb) == 0) {
2036  av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
2037  return AVERROR_INVALIDDATA;
2038  }
2039 
2040  *got_frame_ptr = 1;
2041 
2042  if (avpkt->size < bytestream2_tell(&gb)) {
2043  av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb));
2044  return avpkt->size;
2045  }
2046 
2047  return bytestream2_tell(&gb);
2048 }
2049 
2050 static void adpcm_flush(AVCodecContext *avctx)
2051 {
2052  ADPCMDecodeContext *c = avctx->priv_data;
2053  c->has_status = 0;
2054 }
2055 
2056 
2064 
2065 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
2066 AVCodec ff_ ## name_ ## _decoder = { \
2067  .name = #name_, \
2068  .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
2069  .type = AVMEDIA_TYPE_AUDIO, \
2070  .id = id_, \
2071  .priv_data_size = sizeof(ADPCMDecodeContext), \
2072  .init = adpcm_decode_init, \
2073  .decode = adpcm_decode_frame, \
2074  .flush = adpcm_flush, \
2075  .capabilities = AV_CODEC_CAP_DR1, \
2076  .sample_fmts = sample_fmts_, \
2077 }
2078 
2079 /* Note: Do not forget to add new entries to the Makefile as well. */
2080 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
2081 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC");
2082 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AGM, sample_fmts_s16, adpcm_agm, "ADPCM AmuseGraphics Movie");
2083 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AICA, sample_fmts_s16p, adpcm_aica, "ADPCM Yamaha AICA");
2084 ADPCM_DECODER(AV_CODEC_ID_ADPCM_ARGO, sample_fmts_s16p, adpcm_argo, "ADPCM Argonaut Games");
2085 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
2086 ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK");
2087 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
2088 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
2089 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
2090 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
2091 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
2092 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
2093 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
2094 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
2095 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APM, sample_fmts_s16, adpcm_ima_apm, "ADPCM IMA Ubisoft APM");
2096 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_CUNNING, sample_fmts_s16, adpcm_ima_cunning, "ADPCM IMA Cunning Developments");
2097 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DAT4, sample_fmts_s16, adpcm_ima_dat4, "ADPCM IMA Eurocom DAT4");
2098 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
2099 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
2100 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
2101 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
2102 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
2103 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_MTF, sample_fmts_s16, adpcm_ima_mtf, "ADPCM IMA Capcom's MT Framework");
2104 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI");
2105 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
2106 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical");
2107 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SSI, sample_fmts_s16, adpcm_ima_ssi, "ADPCM IMA Simon & Schuster Interactive");
2108 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
2109 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ALP, sample_fmts_s16, adpcm_ima_alp, "ADPCM IMA High Voltage Software ALP");
2110 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
2111 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
2112 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_both, adpcm_ms, "ADPCM Microsoft");
2113 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MTAF, sample_fmts_s16p, adpcm_mtaf, "ADPCM MTAF");
2114 ADPCM_DECODER(AV_CODEC_ID_ADPCM_PSX, sample_fmts_s16p, adpcm_psx, "ADPCM Playstation");
2115 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
2116 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
2117 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
2118 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
2119 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP_LE, sample_fmts_s16p, adpcm_thp_le, "ADPCM Nintendo THP (little-endian)");
2120 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo THP");
2121 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
2122 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");
2123 ADPCM_DECODER(AV_CODEC_ID_ADPCM_ZORK, sample_fmts_s16, adpcm_zork, "ADPCM Zork");
#define NULL
Definition: coverity.c:32
const struct AVCodec * codec
Definition: avcodec.h:535
static const int16_t ea_adpcm_table[]
Definition: adpcm.c:73
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
int size
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
static int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
Definition: adpcm.c:496
#define THP_GET16(g)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
else temp
Definition: vf_mcdeint.c:256
const char * g
Definition: vf_curves.c:115
#define avpriv_request_sample(...)
int size
Definition: packet.h:356
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:133
#define AV_RL16
Definition: intreadwrite.h:42
static enum AVSampleFormat sample_fmts_s16[]
Definition: adpcm.c:2057
#define sample
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs...
Definition: avcodec.h:1223
static int get_sbits(GetBitContext *s, int n)
Definition: get_bits.h:359
static int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
Definition: adpcm.c:401
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, int clip)
Definition: cfhd.c:196
const uint8_t ff_adpcm_AdaptCoeff1[]
Divided by 4 to fit in 8-bit integers.
Definition: adpcm_data.c:90
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1194
uint8_t
#define av_cold
Definition: attributes.h:88
static av_cold int adpcm_decode_init(AVCodecContext *avctx)
Definition: adpcm.c:106
float delta
static void adpcm_flush(AVCodecContext *avctx)
Definition: adpcm.c:2050
static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
Definition: adpcm.c:628
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:627
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:262
ADPCM tables.
static AVFrame * frame
const char data[16]
Definition: mxf.c:91
uint8_t * data
Definition: packet.h:355
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
static const int8_t mtf_index_table[16]
Definition: adpcm.c:93
static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb, int buf_size, int *coded_samples, int *approx_nb_samples)
Get the number of samples (per channel) that will be decoded from the packet.
Definition: adpcm.c:713
static av_always_inline void bytestream2_skipu(GetByteContext *g, unsigned int size)
Definition: bytestream.h:170
static int16_t adpcm_zork_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
Definition: adpcm.c:505
bitstream reader API header.
static const uint8_t header[24]
Definition: sdr2.c:67
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:1750
channels
Definition: aptx.h:33
#define av_log(a,...)
static const uint16_t table[]
Definition: prosumer.c:206
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
Definition: bytestream.h:154
enum AVCodecID id
Definition: codec.h:204
static int16_t adpcm_ima_cunning_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
Definition: adpcm.c:332
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
static const int8_t xa_adpcm_table[5][2]
Definition: adpcm.c:65
const uint16_t ff_adpcm_afc_coeffs[2][16]
Definition: adpcm_data.c:109
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
ADPCM encoder/decoder common header.
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int current_sample, int64_t nb_samples_notify, AVRational time_base)
#define AVERROR(e)
Definition: error.h:43
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
Definition: bytestream.h:164
const int8_t *const ff_adpcm_index_tables[4]
Definition: adpcm_data.c:50
const int16_t ff_adpcm_step_table[89]
This is the step table.
Definition: adpcm_data.c:61
static int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
Definition: adpcm.c:420
#define FFMAX(a, b)
Definition: common.h:94
static int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
Definition: adpcm.c:352
int8_t exp
Definition: eval.c:72
static int16_t adpcm_ima_alp_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
Definition: adpcm.c:293
const int8_t ff_adpcm_index_table[16]
Definition: adpcm_data.c:40
static const int8_t swf_index_tables[4][16]
Definition: adpcm.c:82
const int16_t ff_adpcm_mtaf_stepsize[32][16]
Definition: adpcm_data.c:114
static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1, const uint8_t *in, ADPCMChannelStatus *left, ADPCMChannelStatus *right, int channels, int sample_offset)
Definition: adpcm.c:540
#define FFMIN(a, b)
Definition: common.h:96
const int8_t ff_adpcm_AdaptCoeff2[]
Divided by 4 to fit in 8-bit integers.
Definition: adpcm_data.c:95
int vqa_version
VQA version.
Definition: adpcm.c:102
static int16_t adpcm_argo_expand_nibble(ADPCMChannelStatus *cs, int nibble, int control, int shift)
Definition: adpcm.c:685
int32_t
static const uint8_t ff_adpcm_ima_block_sizes[4]
Definition: adpcm_data.h:31
static enum AVSampleFormat sample_fmts_s16p[]
Definition: adpcm.c:2059
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
#define AV_RL32
Definition: intreadwrite.h:146
const int16_t ff_adpcm_oki_step_table[49]
Definition: adpcm_data.c:73
#define FF_ARRAY_ELEMS(a)
static const float pred[4]
Definition: siprdata.h:259
static const uint8_t ff_adpcm_ima_block_samples[4]
Definition: adpcm_data.h:32
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
static av_always_inline int bytestream2_tell(GetByteContext *g)
Definition: bytestream.h:188
const int16_t ff_adpcm_AdaptationTable[]
Definition: adpcm_data.c:84
Libavcodec external API header.
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
#define abs(x)
Definition: cuda_runtime.h:35
main external API structure.
Definition: avcodec.h:526
const int16_t ff_adpcm_ima_cunning_step_table[61]
Definition: adpcm_data.c:185
long long int64_t
Definition: coverity.c:34
static int16_t adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
Definition: adpcm.c:482
#define DK3_GET_NEXT_NIBBLE()
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1854
static int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
Definition: adpcm.c:267
int extradata_size
Definition: avcodec.h:628
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static int16_t adpcm_ima_mtf_expand_nibble(ADPCMChannelStatus *c, int nibble)
Definition: adpcm.c:316
int index
Definition: gxfenc.c:89
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:659
static int16_t adpcm_agm_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
Definition: adpcm.c:223
static int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble)
Definition: adpcm.c:375
ADPCMChannelStatus status[14]
Definition: adpcm.c:101
static av_const int sign_extend(int val, unsigned bits)
Definition: mathops.h:130
static int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
Definition: adpcm.c:462
static unsigned int get_bits_le(GetBitContext *s, int n)
Definition: get_bits.h:420
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
const int8_t ff_adpcm_ima_cunning_index_table[9]
Definition: adpcm_data.c:181
uint8_t level
Definition: svq3.c:210
int
const int8_t ff_adpcm_yamaha_difflookup[]
Definition: adpcm_data.c:104
common internal api header.
const int16_t ff_adpcm_yamaha_indexscale[]
Definition: adpcm_data.c:99
static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: adpcm.c:928
signed 16 bits
Definition: samplefmt.h:61
#define flag(name)
Definition: cbs_av1.c:568
static double c[64]
channel
Use these values when setting the channel map with ebur128_set_channel().
Definition: ebur128.h:39
unsigned bps
Definition: movenc.c:1533
static const int8_t zork_index_table[8]
Definition: adpcm.c:89
#define AV_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
Definition: avcodec.h:215
void * priv_data
Definition: avcodec.h:553
static av_always_inline int diff(const uint32_t a, const uint32_t b)
#define xf(width, name, var, range_min, range_max, subs,...)
Definition: cbs_av1.c:679
int channels
number of audio channels
Definition: avcodec.h:1187
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
Definition: bytestream.h:208
static int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
Definition: adpcm.c:441
static enum AVSampleFormat sample_fmts_both[]
Definition: adpcm.c:2061
int16_t step_index
Definition: adpcm.h:35
signed 16 bits, planar
Definition: samplefmt.h:67
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:347
static double val(void *priv, double ch)
Definition: aeval.c:76
This structure stores compressed data.
Definition: packet.h:332
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:366
for(j=16;j >0;--j)
#define tb
Definition: regdef.h:68
#define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_)
Definition: adpcm.c:2065