AOMedia AV1 Codec
blockd.h
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_BLOCKD_H_
13 #define AOM_AV1_COMMON_BLOCKD_H_
14 
15 #include "config/aom_config.h"
16 
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_ports/mem.h"
19 #include "aom_scale/yv12config.h"
20 
21 #include "av1/common/common_data.h"
22 #include "av1/common/quant_common.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/mv.h"
26 #include "av1/common/scale.h"
27 #include "av1/common/seg_common.h"
28 #include "av1/common/tile_common.h"
29 
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33 
34 #define USE_B_QUANT_NO_TRELLIS 1
35 
36 #define MAX_MB_PLANE 3
37 
38 #define MAX_DIFFWTD_MASK_BITS 1
39 
40 #define INTERINTRA_WEDGE_SIGN 0
41 
42 #define DEFAULT_INTER_TX_TYPE DCT_DCT
43 
44 #define MAX_PALETTE_BLOCK_WIDTH 64
45 
46 #define MAX_PALETTE_BLOCK_HEIGHT 64
47 
50 // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
51 enum {
52  DIFFWTD_38 = 0,
53  DIFFWTD_38_INV,
54  DIFFWTD_MASK_TYPES,
55 } UENUM1BYTE(DIFFWTD_MASK_TYPE);
56 
57 enum {
58  KEY_FRAME = 0,
59  INTER_FRAME = 1,
60  INTRA_ONLY_FRAME = 2, // replaces intra-only
61  S_FRAME = 3,
62  FRAME_TYPES,
63 } UENUM1BYTE(FRAME_TYPE);
64 
65 static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
66  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
67 }
68 
69 static INLINE int is_inter_mode(PREDICTION_MODE mode) {
70  return mode >= INTER_MODE_START && mode < INTER_MODE_END;
71 }
72 
73 typedef struct {
74  uint8_t *plane[MAX_MB_PLANE];
75  int stride[MAX_MB_PLANE];
76 } BUFFER_SET;
77 
78 static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
79  return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
80 }
81 static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
82  return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
83 }
84 
85 static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
86  static const PREDICTION_MODE lut[] = {
87  DC_PRED, // DC_PRED
88  V_PRED, // V_PRED
89  H_PRED, // H_PRED
90  D45_PRED, // D45_PRED
91  D135_PRED, // D135_PRED
92  D113_PRED, // D113_PRED
93  D157_PRED, // D157_PRED
94  D203_PRED, // D203_PRED
95  D67_PRED, // D67_PRED
96  SMOOTH_PRED, // SMOOTH_PRED
97  SMOOTH_V_PRED, // SMOOTH_V_PRED
98  SMOOTH_H_PRED, // SMOOTH_H_PRED
99  PAETH_PRED, // PAETH_PRED
100  NEARESTMV, // NEARESTMV
101  NEARMV, // NEARMV
102  GLOBALMV, // GLOBALMV
103  NEWMV, // NEWMV
104  NEARESTMV, // NEAREST_NEARESTMV
105  NEARMV, // NEAR_NEARMV
106  NEARESTMV, // NEAREST_NEWMV
107  NEWMV, // NEW_NEARESTMV
108  NEARMV, // NEAR_NEWMV
109  NEWMV, // NEW_NEARMV
110  GLOBALMV, // GLOBAL_GLOBALMV
111  NEWMV, // NEW_NEWMV
112  };
113  assert(NELEMENTS(lut) == MB_MODE_COUNT);
114  assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
115  return lut[mode];
116 }
117 
118 static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
119  static const PREDICTION_MODE lut[] = {
120  MB_MODE_COUNT, // DC_PRED
121  MB_MODE_COUNT, // V_PRED
122  MB_MODE_COUNT, // H_PRED
123  MB_MODE_COUNT, // D45_PRED
124  MB_MODE_COUNT, // D135_PRED
125  MB_MODE_COUNT, // D113_PRED
126  MB_MODE_COUNT, // D157_PRED
127  MB_MODE_COUNT, // D203_PRED
128  MB_MODE_COUNT, // D67_PRED
129  MB_MODE_COUNT, // SMOOTH_PRED
130  MB_MODE_COUNT, // SMOOTH_V_PRED
131  MB_MODE_COUNT, // SMOOTH_H_PRED
132  MB_MODE_COUNT, // PAETH_PRED
133  MB_MODE_COUNT, // NEARESTMV
134  MB_MODE_COUNT, // NEARMV
135  MB_MODE_COUNT, // GLOBALMV
136  MB_MODE_COUNT, // NEWMV
137  NEARESTMV, // NEAREST_NEARESTMV
138  NEARMV, // NEAR_NEARMV
139  NEWMV, // NEAREST_NEWMV
140  NEARESTMV, // NEW_NEARESTMV
141  NEWMV, // NEAR_NEWMV
142  NEARMV, // NEW_NEARMV
143  GLOBALMV, // GLOBAL_GLOBALMV
144  NEWMV, // NEW_NEWMV
145  };
146  assert(NELEMENTS(lut) == MB_MODE_COUNT);
147  assert(is_inter_compound_mode(mode));
148  return lut[mode];
149 }
150 
151 static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
152  return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
153  mode == NEW_NEARMV);
154 }
155 
156 static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
157  return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
158  mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
159 }
160 
161 static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
162  return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
163 }
164 
165 /* For keyframes, intra block modes are predicted by the (already decoded)
166  modes for the Y blocks to the left and above us; for interframes, there
167  is a single probability table. */
168 
169 typedef struct {
170  // Value of base colors for Y, U, and V
171  uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
172  // Number of base colors for Y (0) and UV (1)
173  uint8_t palette_size[2];
174 } PALETTE_MODE_INFO;
175 
176 typedef struct {
177  FILTER_INTRA_MODE filter_intra_mode;
178  uint8_t use_filter_intra;
179 } FILTER_INTRA_MODE_INFO;
180 
181 static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
182  DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
183 };
184 
185 #if CONFIG_RD_DEBUG
186 #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
187 #endif
188 
189 typedef struct RD_STATS {
190  int rate;
191  int zero_rate;
192  int64_t dist;
193  // Please be careful of using rdcost, it's not guaranteed to be set all the
194  // time.
195  // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
196  // these functions, make sure rdcost is always up-to-date according to
197  // rate/dist.
198  int64_t rdcost;
199  int64_t sse;
200  uint8_t skip_txfm; // sse should equal to dist when skip_txfm == 1
201 #if CONFIG_RD_DEBUG
202  int txb_coeff_cost[MAX_MB_PLANE];
203 #endif // CONFIG_RD_DEBUG
204 } RD_STATS;
205 
206 // This struct is used to group function args that are commonly
207 // sent together in functions related to interinter compound modes
208 typedef struct {
209  uint8_t *seg_mask;
210  int8_t wedge_index;
211  int8_t wedge_sign;
212  DIFFWTD_MASK_TYPE mask_type;
213  COMPOUND_TYPE type;
214 } INTERINTER_COMPOUND_DATA;
215 
216 #define INTER_TX_SIZE_BUF_LEN 16
217 #define TXK_TYPE_BUF_LEN 64
222 typedef struct MB_MODE_INFO {
223 
228  BLOCK_SIZE bsize;
230  PARTITION_TYPE partition;
232  PREDICTION_MODE mode;
234  UV_PREDICTION_MODE uv_mode;
239 
244  int_mv mv[2];
246  MV_REFERENCE_FRAME ref_frame[2];
248  int_interpfilters interp_filters;
250  MOTION_MODE motion_mode;
252  uint8_t num_proj_ref;
257  WarpedMotionParams wm_params;
259  INTERINTRA_MODE interintra_mode;
263  INTERINTER_COMPOUND_DATA interinter_comp;
266 
272  int8_t angle_delta[PLANE_TYPES];
274  FILTER_INTRA_MODE_INFO filter_intra_mode_info;
278  uint8_t cfl_alpha_idx;
280  PALETTE_MODE_INFO palette_mode_info;
283 
288  uint8_t skip_txfm;
290  TX_SIZE tx_size;
292  TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
295 
302  int8_t delta_lf[FRAME_LF_COUNT];
305 
310  uint8_t segment_id : 3;
312  uint8_t seg_id_predicted : 1;
314  uint8_t ref_mv_idx : 2;
316  uint8_t skip_mode : 1;
318  uint8_t use_intrabc : 1;
320  uint8_t comp_group_idx : 1;
322  uint8_t compound_idx : 1;
324  uint8_t use_wedge_interintra : 1;
326  int8_t cdef_strength : 4;
329 #if CONFIG_RD_DEBUG
331  RD_STATS rd_stats;
333  int mi_row;
335  int mi_col;
336 #endif
337 #if CONFIG_INSPECTION
339  int16_t tx_skip[TXK_TYPE_BUF_LEN];
340 #endif
341 } MB_MODE_INFO;
342 
345 static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
346  return mbmi->use_intrabc;
347 }
348 
349 static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
350  assert(mode < UV_INTRA_MODES);
351  static const PREDICTION_MODE uv2y[] = {
352  DC_PRED, // UV_DC_PRED
353  V_PRED, // UV_V_PRED
354  H_PRED, // UV_H_PRED
355  D45_PRED, // UV_D45_PRED
356  D135_PRED, // UV_D135_PRED
357  D113_PRED, // UV_D113_PRED
358  D157_PRED, // UV_D157_PRED
359  D203_PRED, // UV_D203_PRED
360  D67_PRED, // UV_D67_PRED
361  SMOOTH_PRED, // UV_SMOOTH_PRED
362  SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
363  SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
364  PAETH_PRED, // UV_PAETH_PRED
365  DC_PRED, // UV_CFL_PRED
366  INTRA_INVALID, // UV_INTRA_MODES
367  INTRA_INVALID, // UV_MODE_INVALID
368  };
369  return uv2y[mode];
370 }
371 
372 static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
373  return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
374 }
375 
376 static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
377  return mbmi->ref_frame[1] > INTRA_FRAME;
378 }
379 
380 static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
381  return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
382  (mbmi->ref_frame[1] >= BWDREF_FRAME)));
383 }
384 
385 static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
386  static const MV_REFERENCE_FRAME lut[] = {
387  LAST_FRAME, // LAST_LAST2_FRAMES,
388  LAST_FRAME, // LAST_LAST3_FRAMES,
389  LAST_FRAME, // LAST_GOLDEN_FRAMES,
390  BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
391  LAST2_FRAME, // LAST2_LAST3_FRAMES
392  LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
393  LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
394  BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
395  ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
396  };
397  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
398  return lut[ref_idx];
399 }
400 
401 static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
402  static const MV_REFERENCE_FRAME lut[] = {
403  LAST2_FRAME, // LAST_LAST2_FRAMES,
404  LAST3_FRAME, // LAST_LAST3_FRAMES,
405  GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
406  ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
407  LAST3_FRAME, // LAST2_LAST3_FRAMES
408  GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
409  GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
410  ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
411  ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
412  };
413  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
414  return lut[ref_idx];
415 }
416 
417 PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
418 
419 PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
420 
421 static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
422  TransformationType type) {
423  const PREDICTION_MODE mode = mbmi->mode;
424  const BLOCK_SIZE bsize = mbmi->bsize;
425  const int block_size_allowed =
426  AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
427  return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
428  block_size_allowed;
429 }
430 
431 #if CONFIG_MISMATCH_DEBUG
432 static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
433  int mi_row, int tx_blk_col, int tx_blk_row,
434  int subsampling_x, int subsampling_y) {
435  *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
436  (tx_blk_col << MI_SIZE_LOG2);
437  *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
438  (tx_blk_row << MI_SIZE_LOG2);
439 }
440 #endif
441 
442 enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
443 
444 struct buf_2d {
445  uint8_t *buf;
446  uint8_t *buf0;
447  int width;
448  int height;
449  int stride;
450 };
451 
452 typedef struct eob_info {
453  uint16_t eob;
454  uint16_t max_scan_line;
455 } eob_info;
456 
457 typedef struct {
458  DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
459  eob_info eob_data[MAX_MB_PLANE]
460  [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
461  DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
462 } CB_BUFFER;
463 
464 typedef struct macroblockd_plane {
465  PLANE_TYPE plane_type;
466  int subsampling_x;
467  int subsampling_y;
468  struct buf_2d dst;
469  struct buf_2d pre[2];
470  ENTROPY_CONTEXT *above_entropy_context;
471  ENTROPY_CONTEXT *left_entropy_context;
472 
473  // The dequantizers below are true dequantizers used only in the
474  // dequantization process. They have the same coefficient
475  // shift/scale as TX.
476  int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
477  // Pointer to color index map of:
478  // - Current coding block, on encoder side.
479  // - Current superblock, on decoder side.
480  uint8_t *color_index_map;
481 
482  // block size in pixels
483  uint8_t width, height;
484 
485  qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
486  qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
487 } MACROBLOCKD_PLANE;
488 
489 #define BLOCK_OFFSET(i) ((i) << 4)
490 
494 typedef struct {
498  DECLARE_ALIGNED(16, InterpKernel, vfilter);
499 
503  DECLARE_ALIGNED(16, InterpKernel, hfilter);
504 } WienerInfo;
505 
507 typedef struct {
511  int ep;
512 
516  int xqd[2];
517 } SgrprojInfo;
518 
521 #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
522 #define CFL_BUF_LINE (32)
523 #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
524 #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
525 #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
526 typedef struct cfl_ctx {
527  // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
528  // shifts)
529  uint16_t recon_buf_q3[CFL_BUF_SQUARE];
530  // Q3 AC contributions (reconstructed luma pixels - tx block avg)
531  int16_t ac_buf_q3[CFL_BUF_SQUARE];
532 
533  // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
534  // for every scaling parameter
535  bool dc_pred_is_cached[CFL_PRED_PLANES];
536  // Whether the DC_PRED cache is enabled. The DC_PRED cache is disabled when
537  // decoding.
538  bool use_dc_pred_cache;
539  // Only cache the first row of the DC_PRED
540  int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
541 
542  // Height and width currently used in the CfL prediction buffer.
543  int buf_height, buf_width;
544 
545  int are_parameters_computed;
546 
547  // Chroma subsampling
548  int subsampling_x, subsampling_y;
549 
550  // Whether the reconstructed luma pixels need to be stored
551  int store_y;
552 } CFL_CTX;
553 
554 typedef struct dist_wtd_comp_params {
555  int use_dist_wtd_comp_avg;
556  int fwd_offset;
557  int bck_offset;
558 } DIST_WTD_COMP_PARAMS;
559 
560 struct scale_factors;
561 
570 typedef struct macroblockd {
575  int mi_row;
576  int mi_col;
583 
602 
606  struct macroblockd_plane plane[MAX_MB_PLANE];
607 
611  TileInfo tile;
612 
618 
635 
660 
666  uint8_t *tx_type_map;
672 
687  const struct scale_factors *block_ref_scale_factors[2];
688 
696 
703  ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
710  ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
711 
718  PARTITION_CONTEXT *above_partition_context;
725  PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
726 
733  TXFM_CONTEXT *above_txfm_context;
740  TXFM_CONTEXT *left_txfm_context;
747  TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
748 
757  WienerInfo wiener_info[MAX_MB_PLANE];
758  SgrprojInfo sgrproj_info[MAX_MB_PLANE];
765  uint8_t width;
766  uint8_t height;
776  CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
781  uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
782 
793 
798  uint8_t neighbors_ref_counts[REF_FRAMES];
799 
803  FRAME_CONTEXT *tile_ctx;
804 
808  int bd;
809 
813  int qindex[MAX_SEGMENTS];
817  int lossless[MAX_SEGMENTS];
829 
834 
838  struct aom_internal_error_info *error_info;
839 
843  const WarpedMotionParams *global_motion;
844 
868  int8_t delta_lf[FRAME_LF_COUNT];
885 
889  uint8_t *seg_mask;
890 
894  CFL_CTX cfl;
895 
906 
916  CONV_BUF_TYPE *tmp_conv_dst;
927  uint8_t *tmp_obmc_bufs[2];
928 } MACROBLOCKD;
929 
932 static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
933 #if CONFIG_AV1_HIGHBITDEPTH
934  return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
935 #else
936  (void)xd;
937  return 0;
938 #endif
939 }
940 
941 static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
942 #if CONFIG_AV1_HIGHBITDEPTH
943  return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
944  ? CONVERT_TO_BYTEPTR(buf16)
945  : buf16;
946 #else
947  (void)xd;
948  return buf16;
949 #endif
950 }
951 
952 typedef struct BitDepthInfo {
953  int bit_depth;
959  int use_highbitdepth_buf;
960 } BitDepthInfo;
961 
962 static INLINE BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) {
963  BitDepthInfo bit_depth_info;
964  bit_depth_info.bit_depth = xd->bd;
965  bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd);
966  assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf,
967  bit_depth_info.bit_depth == 8));
968  return bit_depth_info;
969 }
970 
971 static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
972  switch (bsize) {
973  case BLOCK_4X4: return 0;
974  case BLOCK_8X8: return 1;
975  case BLOCK_16X16: return 2;
976  case BLOCK_32X32: return 3;
977  case BLOCK_64X64: return 4;
978  case BLOCK_128X128: return 5;
979  default: return SQR_BLOCK_SIZES;
980  }
981 }
982 
983 // For a square block size 'bsize', returns the size of the sub-blocks used by
984 // the given partition type. If the partition produces sub-blocks of different
985 // sizes, then the function returns the largest sub-block size.
986 // Implements the Partition_Subsize lookup table in the spec (Section 9.3.
987 // Conversion tables).
988 // Note: the input block size should be square.
989 // Otherwise it's considered invalid.
990 static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
991  PARTITION_TYPE partition) {
992  if (partition == PARTITION_INVALID) {
993  return BLOCK_INVALID;
994  } else {
995  const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
996  return sqr_bsize_idx >= SQR_BLOCK_SIZES
997  ? BLOCK_INVALID
998  : subsize_lookup[partition][sqr_bsize_idx];
999  }
1000 }
1001 
1002 static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
1003  PLANE_TYPE plane_type) {
1004  static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
1005  DCT_DCT, // DC_PRED
1006  ADST_DCT, // V_PRED
1007  DCT_ADST, // H_PRED
1008  DCT_DCT, // D45_PRED
1009  ADST_ADST, // D135_PRED
1010  ADST_DCT, // D113_PRED
1011  DCT_ADST, // D157_PRED
1012  DCT_ADST, // D203_PRED
1013  ADST_DCT, // D67_PRED
1014  ADST_ADST, // SMOOTH_PRED
1015  ADST_DCT, // SMOOTH_V_PRED
1016  DCT_ADST, // SMOOTH_H_PRED
1017  ADST_ADST, // PAETH_PRED
1018  };
1019  const PREDICTION_MODE mode =
1020  (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1021  assert(mode < INTRA_MODES);
1022  return _intra_mode_to_tx_type[mode];
1023 }
1024 
1025 static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
1026 
1027 static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
1028  return bsize > BLOCK_4X4;
1029 }
1030 
1031 // Number of transform types in each set type
1032 static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1033  1, 2, 5, 7, 12, 16,
1034 };
1035 
1036 static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
1037  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1038  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1039  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1040  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
1041  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
1042  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
1043 };
1044 
1045 // The bitmask corresponds to the transform types as defined in
1046 // enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
1047 // the use of the corresponding transform type in that table.
1048 // The av1_derived_intra_tx_used_flag table is used when
1049 // use_reduced_intra_txset is set to 2, where one only searches
1050 // the transform types derived from residual statistics.
1051 static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
1052  0x0209, // DC_PRED: 0000 0010 0000 1001
1053  0x0403, // V_PRED: 0000 0100 0000 0011
1054  0x0805, // H_PRED: 0000 1000 0000 0101
1055  0x020F, // D45_PRED: 0000 0010 0000 1111
1056  0x0009, // D135_PRED: 0000 0000 0000 1001
1057  0x0009, // D113_PRED: 0000 0000 0000 1001
1058  0x0009, // D157_PRED: 0000 0000 0000 1001
1059  0x0805, // D203_PRED: 0000 1000 0000 0101
1060  0x0403, // D67_PRED: 0000 0100 0000 0011
1061  0x0205, // SMOOTH_PRED: 0000 0010 0000 1001
1062  0x0403, // SMOOTH_V_PRED: 0000 0100 0000 0011
1063  0x0805, // SMOOTH_H_PRED: 0000 1000 0000 0101
1064  0x0209, // PAETH_PRED: 0000 0010 0000 1001
1065 };
1066 
1067 static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
1068  0x080F, // DC_PRED: 0000 1000 0000 1111
1069  0x040F, // V_PRED: 0000 0100 0000 1111
1070  0x080F, // H_PRED: 0000 1000 0000 1111
1071  0x020F, // D45_PRED: 0000 0010 0000 1111
1072  0x080F, // D135_PRED: 0000 1000 0000 1111
1073  0x040F, // D113_PRED: 0000 0100 0000 1111
1074  0x080F, // D157_PRED: 0000 1000 0000 1111
1075  0x080F, // D203_PRED: 0000 1000 0000 1111
1076  0x040F, // D67_PRED: 0000 0100 0000 1111
1077  0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
1078  0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
1079  0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
1080  0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
1081 };
1082 
1083 static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
1084  0x0001, // 0000 0000 0000 0001
1085  0x0201, // 0000 0010 0000 0001
1086  0x020F, // 0000 0010 0000 1111
1087  0x0E0F, // 0000 1110 0000 1111
1088  0x0FFF, // 0000 1111 1111 1111
1089  0xFFFF, // 1111 1111 1111 1111
1090 };
1091 
1092 static const TxSetType av1_ext_tx_set_lookup[2][2] = {
1093  { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
1094  { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
1095 };
1096 
1097 static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
1098  int use_reduced_set) {
1099  const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
1100  if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
1101  if (tx_size_sqr_up == TX_32X32)
1102  return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
1103  if (use_reduced_set)
1104  return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
1105  const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
1106  return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
1107 }
1108 
1109 // Maps tx set types to the indices.
1110 static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
1111  { // Intra
1112  0, -1, 2, 1, -1, -1 },
1113  { // Inter
1114  0, 3, -1, -1, 2, 1 },
1115 };
1116 
1117 static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
1118  int use_reduced_set) {
1119  const TxSetType set_type =
1120  av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1121  return ext_tx_set_index[is_inter][set_type];
1122 }
1123 
1124 static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
1125  int use_reduced_set) {
1126  const int set_type =
1127  av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1128  return av1_num_ext_tx_set[set_type];
1129 }
1130 
1131 #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
1132 #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
1133 
1134 static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
1135  const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1136  const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
1137  if (bsize == BLOCK_4X4)
1138  return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
1139  if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
1140  return max_rect_tx_size;
1141  else
1142  return largest_tx_size;
1143 }
1144 
1145 static const uint8_t mode_to_angle_map[] = {
1146  0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
1147 };
1148 
1149 // Converts block_index for given transform size to index of the block in raster
1150 // order.
1151 static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
1152  int block_idx) {
1153  // For transform size 4x8, the possible block_idx values are 0 & 2, because
1154  // block_idx values are incremented in steps of size 'tx_width_unit x
1155  // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
1156  // block number 1 in raster order, inside an 8x8 MI block.
1157  // For any other transform size, the two indices are equivalent.
1158  return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
1159 }
1160 
1161 // Inverse of above function.
1162 // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
1163 static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
1164  int raster_order) {
1165  assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
1166  // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
1167  return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
1168 }
1169 
1170 static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
1171  const MACROBLOCKD *xd,
1172  TX_SIZE tx_size,
1173  int use_screen_content_tools) {
1174  const MB_MODE_INFO *const mbmi = xd->mi[0];
1175 
1176  if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
1177  xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
1178  use_screen_content_tools)
1179  return DEFAULT_INTER_TX_TYPE;
1180 
1181  return intra_mode_to_tx_type(mbmi, plane_type);
1182 }
1183 
1184 // Implements the get_plane_residual_size() function in the spec (Section
1185 // 5.11.38. Get plane residual size function).
1186 static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
1187  int subsampling_x,
1188  int subsampling_y) {
1189  assert(bsize < BLOCK_SIZES_ALL);
1190  assert(subsampling_x >= 0 && subsampling_x < 2);
1191  assert(subsampling_y >= 0 && subsampling_y < 2);
1192  return av1_ss_size_lookup[bsize][subsampling_x][subsampling_y];
1193 }
1194 
1195 /*
1196  * Logic to generate the lookup tables:
1197  *
1198  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1199  * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1200  * txs = sub_tx_size_map[txs];
1201  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1202  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1203  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1204  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1205  */
1206 static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
1207  int blk_col) {
1208  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1209  0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
1210  };
1211  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1212  0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
1213  };
1214  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1215  0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
1216  };
1217  const int index =
1218  ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1219  (blk_col >> tw_w_log2_table[bsize]);
1220  assert(index < INTER_TX_SIZE_BUF_LEN);
1221  return index;
1222 }
1223 
1224 #if CONFIG_INSPECTION
1225 /*
1226  * Here is the logic to generate the lookup tables:
1227  *
1228  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1229  * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
1230  * txs = sub_tx_size_map[txs];
1231  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1232  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1233  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1234  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1235  */
1236 static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
1237  int blk_col) {
1238  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1239  0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1240  };
1241  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1242  0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1243  };
1244  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1245  0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
1246  };
1247  const int index =
1248  ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1249  (blk_col >> tw_w_log2_table[bsize]);
1250  assert(index < TXK_TYPE_BUF_LEN);
1251  return index;
1252 }
1253 #endif // CONFIG_INSPECTION
1254 
1255 static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
1256  int blk_col, TX_SIZE tx_size,
1257  TX_TYPE tx_type) {
1258  const int stride = xd->tx_type_map_stride;
1259  xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
1260 
1261  const int txw = tx_size_wide_unit[tx_size];
1262  const int txh = tx_size_high_unit[tx_size];
1263  // The 16x16 unit is due to the constraint from tx_64x64 which sets the
1264  // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
1265  // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
1266  // the intricacy, cover all the 16x16 units inside a 64 level transform.
1267  if (txw == tx_size_wide_unit[TX_64X64] ||
1268  txh == tx_size_high_unit[TX_64X64]) {
1269  const int tx_unit = tx_size_wide_unit[TX_16X16];
1270  for (int idy = 0; idy < txh; idy += tx_unit) {
1271  for (int idx = 0; idx < txw; idx += tx_unit) {
1272  xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
1273  }
1274  }
1275  }
1276 }
1277 
1278 static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
1279  PLANE_TYPE plane_type, int blk_row,
1280  int blk_col, TX_SIZE tx_size,
1281  int reduced_tx_set) {
1282  const MB_MODE_INFO *const mbmi = xd->mi[0];
1283  if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
1284  return DCT_DCT;
1285  }
1286 
1287  TX_TYPE tx_type;
1288  if (plane_type == PLANE_TYPE_Y) {
1289  tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1290  } else {
1291  if (is_inter_block(mbmi)) {
1292  // scale back to y plane's coordinate
1293  const struct macroblockd_plane *const pd = &xd->plane[plane_type];
1294  blk_row <<= pd->subsampling_y;
1295  blk_col <<= pd->subsampling_x;
1296  tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1297  } else {
1298  // In intra mode, uv planes don't share the same prediction mode as y
1299  // plane, so the tx_type should not be shared
1300  tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
1301  }
1302  const TxSetType tx_set_type =
1303  av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
1304  if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
1305  }
1306  assert(tx_type < TX_TYPES);
1307  assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1308  reduced_tx_set)][tx_type]);
1309  return tx_type;
1310 }
1311 
1312 void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1313  const int num_planes);
1314 
1315 /*
1316  * Logic to generate the lookup table:
1317  *
1318  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1319  * int depth = 0;
1320  * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1321  * depth++;
1322  * tx_size = sub_tx_size_map[tx_size];
1323  * }
1324  */
1325 static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
1326  static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1327  0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1328  };
1329  return bsize_to_max_depth_table[bsize];
1330 }
1331 
1332 /*
1333  * Logic to generate the lookup table:
1334  *
1335  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1336  * assert(tx_size != TX_4X4);
1337  * int depth = 0;
1338  * while (tx_size != TX_4X4) {
1339  * depth++;
1340  * tx_size = sub_tx_size_map[tx_size];
1341  * }
1342  * assert(depth < 10);
1343  */
1344 static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1345  assert(bsize < BLOCK_SIZES_ALL);
1346  static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1347  0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1348  };
1349  const int depth = bsize_to_tx_size_depth_table[bsize];
1350  assert(depth <= MAX_TX_CATS);
1351  return depth - 1;
1352 }
1353 
1354 static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1355  TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1356  TX_SIZE tx_size = max_tx_size;
1357  for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1358  return tx_size;
1359 }
1360 
1361 static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1362  switch (tx_size) {
1363  case TX_64X64:
1364  case TX_64X32:
1365  case TX_32X64: return TX_32X32;
1366  case TX_64X16: return TX_32X16;
1367  case TX_16X64: return TX_16X32;
1368  default: return tx_size;
1369  }
1370 }
1371 
1372 static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1373  int subsampling_y) {
1374  const BLOCK_SIZE plane_bsize =
1375  get_plane_block_size(bsize, subsampling_x, subsampling_y);
1376  assert(plane_bsize < BLOCK_SIZES_ALL);
1377  const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1378  return av1_get_adjusted_tx_size(uv_tx);
1379 }
1380 
1381 static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1382  const MB_MODE_INFO *mbmi = xd->mi[0];
1383  if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1384  if (plane == 0) return mbmi->tx_size;
1385  const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1386  return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
1387  pd->subsampling_y);
1388 }
1389 
1390 void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1391  const int num_planes);
1392 
1393 void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1394 
1395 void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1396 
1397 typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1398  int blk_row, int blk_col,
1399  BLOCK_SIZE plane_bsize,
1400  TX_SIZE tx_size, void *arg);
1401 
1402 void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1403  struct macroblockd_plane *pd, int plane,
1404  BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1405  int has_eob, int aoff, int loff);
1406 
1407 #define MAX_INTERINTRA_SB_SQUARE 32 * 32
1408 static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1409  return (mbmi->ref_frame[0] > INTRA_FRAME &&
1410  mbmi->ref_frame[1] == INTRA_FRAME);
1411 }
1412 
1413 static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1414  return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1415 }
1416 
1417 static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1418  return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1419 }
1420 
1421 static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1422  return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1423 }
1424 
1425 static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1426  return is_interintra_allowed_bsize(mbmi->bsize) &&
1427  is_interintra_allowed_mode(mbmi->mode) &&
1428  is_interintra_allowed_ref(mbmi->ref_frame);
1429 }
1430 
1431 static INLINE int is_interintra_allowed_bsize_group(int group) {
1432  int i;
1433  for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1434  if (size_group_lookup[i] == group &&
1435  is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1436  return 1;
1437  }
1438  }
1439  return 0;
1440 }
1441 
1442 static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1443  return mbmi->ref_frame[0] > INTRA_FRAME &&
1444  mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1445 }
1446 
1447 static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1448  int plane) {
1449  if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1450  const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1451  if (plane == 0) return max_txsize; // luma
1452  return av1_get_adjusted_tx_size(max_txsize); // chroma
1453 }
1454 
1455 static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1456  assert(bsize < BLOCK_SIZES_ALL);
1457  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1458 }
1459 
1460 static INLINE int is_motion_variation_allowed_compound(
1461  const MB_MODE_INFO *mbmi) {
1462  return !has_second_ref(mbmi);
1463 }
1464 
1465 // input: log2 of length, 0(4), 1(8), ...
1466 static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1467 
1468 static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1469  return mbmi->overlappable_neighbors != 0;
1470 }
1471 
1472 static INLINE MOTION_MODE
1473 motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1474  const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1475  if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1476  if (xd->cur_frame_force_integer_mv == 0) {
1477  const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1478  if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1479  }
1480  if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
1481  is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1482  is_motion_variation_allowed_compound(mbmi)) {
1483  assert(!has_second_ref(mbmi));
1484  if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
1486  !av1_is_scaled(xd->block_ref_scale_factors[0])) {
1487  return WARPED_CAUSAL;
1488  }
1489  return OBMC_CAUSAL;
1490  }
1491  return SIMPLE_TRANSLATION;
1492 }
1493 
1494 static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1495  return (is_inter_block(mbmi));
1496 }
1497 
1498 static INLINE int av1_allow_palette(int allow_screen_content_tools,
1499  BLOCK_SIZE sb_type) {
1500  assert(sb_type < BLOCK_SIZES_ALL);
1501  return allow_screen_content_tools &&
1502  block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH &&
1503  block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT &&
1504  sb_type >= BLOCK_8X8;
1505 }
1506 
1507 // Returns sub-sampled dimensions of the given block.
1508 // The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1509 // differ from 'height' and 'width' when part of the block is outside the
1510 // right
1511 // and/or bottom image boundary.
1512 static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1513  const MACROBLOCKD *xd, int *width,
1514  int *height,
1515  int *rows_within_bounds,
1516  int *cols_within_bounds) {
1517  const int block_height = block_size_high[bsize];
1518  const int block_width = block_size_wide[bsize];
1519  const int block_rows = (xd->mb_to_bottom_edge >= 0)
1520  ? block_height
1521  : (xd->mb_to_bottom_edge >> 3) + block_height;
1522  const int block_cols = (xd->mb_to_right_edge >= 0)
1523  ? block_width
1524  : (xd->mb_to_right_edge >> 3) + block_width;
1525  const struct macroblockd_plane *const pd = &xd->plane[plane];
1526  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1527  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1528  assert(block_width >= block_cols);
1529  assert(block_height >= block_rows);
1530  const int plane_block_width = block_width >> pd->subsampling_x;
1531  const int plane_block_height = block_height >> pd->subsampling_y;
1532  // Special handling for chroma sub8x8.
1533  const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1534  const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1535  if (width) {
1536  *width = plane_block_width + 2 * is_chroma_sub8_x;
1537  assert(*width >= 0);
1538  }
1539  if (height) {
1540  *height = plane_block_height + 2 * is_chroma_sub8_y;
1541  assert(*height >= 0);
1542  }
1543  if (rows_within_bounds) {
1544  *rows_within_bounds =
1545  (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1546  assert(*rows_within_bounds >= 0);
1547  }
1548  if (cols_within_bounds) {
1549  *cols_within_bounds =
1550  (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1551  assert(*cols_within_bounds >= 0);
1552  }
1553 }
1554 
1555 /* clang-format off */
1556 // Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
1557 typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1558  [CDF_SIZE(PALETTE_COLORS)];
1559 // Pointer to a const three-dimensional array whose first dimension is
1560 // PALETTE_SIZES.
1561 typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
1562 /* clang-format on */
1563 
1564 typedef struct {
1565  int rows;
1566  int cols;
1567  int n_colors;
1568  int plane_width;
1569  int plane_height;
1570  uint8_t *color_map;
1571  MapCdf map_cdf;
1572  ColorCost color_cost;
1573 } Av1ColorMapParam;
1574 
1575 static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
1576  const MB_MODE_INFO *mbmi) {
1577  int ref;
1578 
1579  // First check if all modes are GLOBALMV
1580  if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1581 
1582  if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
1583  return 0;
1584 
1585  // Now check if all global motion is non translational
1586  for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1587  if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1588  }
1589  return 1;
1590 }
1591 
1592 static INLINE PLANE_TYPE get_plane_type(int plane) {
1593  return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1594 }
1595 
1596 static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
1597  if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1598  return 1024;
1599  }
1600  if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1601  return 512;
1602  }
1603  return tx_size_2d[tx_size];
1604 }
1605 
1608 #ifdef __cplusplus
1609 } // extern "C"
1610 #endif
1611 
1612 #endif // AOM_AV1_COMMON_BLOCKD_H_
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:222
int8_t delta_lf_from_base
Definition: blockd.h:300
int_interpfilters interp_filters
Filter used in subpel interpolation.
Definition: blockd.h:248
int8_t interintra_wedge_index
The type of wedge used in interintra mode.
Definition: blockd.h:261
int_mv mv[2]
The motion vectors used by the current inter mode.
Definition: blockd.h:244
int8_t delta_lf[FRAME_LF_COUNT]
Definition: blockd.h:302
PREDICTION_MODE mode
The prediction mode used.
Definition: blockd.h:232
INTERINTER_COMPOUND_DATA interinter_comp
Struct that stores the data used in interinter compound mode.
Definition: blockd.h:263
uint8_t use_wedge_interintra
Whether to use interintra wedge.
Definition: blockd.h:324
UV_PREDICTION_MODE uv_mode
The UV mode when intra is used.
Definition: blockd.h:234
PALETTE_MODE_INFO palette_mode_info
Stores the size and colors of palette mode.
Definition: blockd.h:280
uint8_t segment_id
The segment id.
Definition: blockd.h:310
uint8_t cfl_alpha_idx
Chroma from Luma: Index of the alpha Cb and alpha Cr combination.
Definition: blockd.h:278
uint8_t ref_mv_idx
Which ref_mv to use.
Definition: blockd.h:314
uint8_t compound_idx
Indicates whether dist_wtd_comp(0) is used or not (0).
Definition: blockd.h:322
uint8_t overlappable_neighbors
The number of overlapped neighbors above/left for obmc/warp motion mode.
Definition: blockd.h:255
MV_REFERENCE_FRAME ref_frame[2]
The reference frames for the MV.
Definition: blockd.h:246
uint8_t skip_txfm
Whether to skip transforming and sending.
Definition: blockd.h:288
TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN]
Transform size when recursive txfm tree is on.
Definition: blockd.h:292
int8_t cdef_strength
CDEF strength per BLOCK_64X64.
Definition: blockd.h:326
int current_qindex
The q index for the current coding block.
Definition: blockd.h:236
int8_t angle_delta[PLANE_TYPES]
Directional mode delta: the angle is base angle + (angle_delta * step).
Definition: blockd.h:272
FILTER_INTRA_MODE_INFO filter_intra_mode_info
The type of filter intra mode used (if applicable).
Definition: blockd.h:274
WarpedMotionParams wm_params
The parameters used in warp motion mode.
Definition: blockd.h:257
MOTION_MODE motion_mode
The motion mode used by the inter prediction.
Definition: blockd.h:250
uint8_t num_proj_ref
Number of samples used by warp causal.
Definition: blockd.h:252
uint8_t seg_id_predicted
Only valid when temporal update if off.
Definition: blockd.h:312
int8_t cfl_alpha_signs
Chroma from Luma: Joint sign of alpha Cb and alpha Cr.
Definition: blockd.h:276
uint8_t comp_group_idx
Indicates if masked compound is used(1) or not (0).
Definition: blockd.h:320
uint8_t skip_mode
Inter skip mode.
Definition: blockd.h:316
INTERINTRA_MODE interintra_mode
The type of intra mode used by inter-intra.
Definition: blockd.h:259
PARTITION_TYPE partition
The partition type of the current coding block.
Definition: blockd.h:230
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:228
TX_SIZE tx_size
Transform size when fixed size txfm is used (e.g. intra modes).
Definition: blockd.h:290
uint8_t use_intrabc
Whether intrabc is used.
Definition: blockd.h:318
Parameters related to Sgrproj Filter.
Definition: blockd.h:507
int ep
Definition: blockd.h:511
Parameters related to Wiener Filter.
Definition: blockd.h:494
Variables related to current coding block.
Definition: blockd.h:570
bool left_available
Definition: blockd.h:626
uint8_t * tx_type_map
Definition: blockd.h:666
int mb_to_bottom_edge
Definition: blockd.h:680
TXFM_CONTEXT * left_txfm_context
Definition: blockd.h:740
struct macroblockd_plane plane[3]
Definition: blockd.h:606
TileInfo tile
Definition: blockd.h:611
int mb_to_top_edge
Definition: blockd.h:679
int8_t delta_lf_from_base
Definition: blockd.h:853
int mb_to_right_edge
Definition: blockd.h:678
WienerInfo wiener_info[3]
Definition: blockd.h:757
bool up_available
Definition: blockd.h:622
CONV_BUF_TYPE * tmp_conv_dst
Definition: blockd.h:916
MB_MODE_INFO * above_mbmi
Definition: blockd.h:645
bool chroma_up_available
Definition: blockd.h:630
TXFM_CONTEXT * above_txfm_context
Definition: blockd.h:733
int bd
Definition: blockd.h:808
bool chroma_left_available
Definition: blockd.h:634
PARTITION_CONTEXT * above_partition_context
Definition: blockd.h:718
uint8_t * seg_mask
Definition: blockd.h:889
int qindex[8]
Definition: blockd.h:813
uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition: blockd.h:781
MB_MODE_INFO * chroma_left_mbmi
Definition: blockd.h:652
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition: blockd.h:747
int tx_type_map_stride
Definition: blockd.h:671
const WarpedMotionParams * global_motion
Definition: blockd.h:843
MB_MODE_INFO * chroma_above_mbmi
Definition: blockd.h:659
FRAME_CONTEXT * tile_ctx
Definition: blockd.h:803
uint8_t * tmp_obmc_bufs[2]
Definition: blockd.h:927
int mi_row
Definition: blockd.h:575
const YV12_BUFFER_CONFIG * cur_buf
Definition: blockd.h:695
int mi_stride
Definition: blockd.h:582
bool is_last_vertical_rect
Definition: blockd.h:787
bool is_first_horizontal_rect
Definition: blockd.h:792
uint8_t width
Definition: blockd.h:765
struct aom_internal_error_info * error_info
Definition: blockd.h:838
CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition: blockd.h:776
int current_base_qindex
Definition: blockd.h:828
CFL_CTX cfl
Definition: blockd.h:894
const struct scale_factors * block_ref_scale_factors[2]
Definition: blockd.h:687
int lossless[8]
Definition: blockd.h:817
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition: blockd.h:710
bool cdef_transmitted[4]
Definition: blockd.h:884
ENTROPY_CONTEXT * above_entropy_context[3]
Definition: blockd.h:703
int8_t delta_lf[FRAME_LF_COUNT]
Definition: blockd.h:868
MB_MODE_INFO ** mi
Definition: blockd.h:617
uint8_t height
Definition: blockd.h:766
MB_MODE_INFO * left_mbmi
Definition: blockd.h:640
uint16_t color_index_map_offset[2]
Definition: blockd.h:905
SgrprojInfo sgrproj_info[3]
Definition: blockd.h:758
int cur_frame_force_integer_mv
Definition: blockd.h:833
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition: blockd.h:725
uint8_t neighbors_ref_counts[REF_FRAMES]
Definition: blockd.h:798
bool is_chroma_ref
Definition: blockd.h:601
int mi_col
Definition: blockd.h:576
int mb_to_left_edge
Definition: blockd.h:677
YV12 frame buffer data structure.
Definition: yv12config.h:44