AOMedia AV1 Codec
av1_common_int.h
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13 #define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14 
15 #include "config/aom_config.h"
16 #include "config/av1_rtcd.h"
17 
18 #include "aom/internal/aom_codec_internal.h"
19 #include "aom_dsp/flow_estimation/corner_detect.h"
20 #include "aom_util/aom_thread.h"
21 #include "av1/common/alloccommon.h"
22 #include "av1/common/av1_loopfilter.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/entropymv.h"
26 #include "av1/common/enums.h"
27 #include "av1/common/frame_buffers.h"
28 #include "av1/common/mv.h"
29 #include "av1/common/quant_common.h"
30 #include "av1/common/restoration.h"
31 #include "av1/common/tile_common.h"
32 #include "av1/common/timing.h"
33 #include "aom_dsp/grain_params.h"
34 #include "aom_dsp/grain_table.h"
35 #include "aom_dsp/odintrin.h"
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39 
40 #if defined(__clang__) && defined(__has_warning)
41 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
42 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
43 #endif
44 #elif defined(__GNUC__) && __GNUC__ >= 7
45 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
46 #endif
47 
48 #ifndef AOM_FALLTHROUGH_INTENDED
49 #define AOM_FALLTHROUGH_INTENDED \
50  do { \
51  } while (0)
52 #endif
53 
54 #define CDEF_MAX_STRENGTHS 16
55 
56 /* Constant values while waiting for the sequence header */
57 #define FRAME_ID_LENGTH 15
58 #define DELTA_FRAME_ID_LENGTH 14
59 
60 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
61 // Extra frame context which is always kept at default values
62 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
63 #define PRIMARY_REF_BITS 3
64 #define PRIMARY_REF_NONE 7
65 
66 #define NUM_PING_PONG_BUFFERS 2
67 
68 #define MAX_NUM_TEMPORAL_LAYERS 8
69 #define MAX_NUM_SPATIAL_LAYERS 4
70 /* clang-format off */
71 // clang-format seems to think this is a pointer dereference and not a
72 // multiplication.
73 #define MAX_NUM_OPERATING_POINTS \
74  (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
75 /* clang-format on */
76 
77 // TODO(jingning): Turning this on to set up transform coefficient
78 // processing timer.
79 #define TXCOEFF_TIMER 0
80 #define TXCOEFF_COST_TIMER 0
81 
84 enum {
85  SINGLE_REFERENCE = 0,
86  COMPOUND_REFERENCE = 1,
87  REFERENCE_MODE_SELECT = 2,
88  REFERENCE_MODES = 3,
89 } UENUM1BYTE(REFERENCE_MODE);
90 
91 enum {
95  REFRESH_FRAME_CONTEXT_DISABLED,
100  REFRESH_FRAME_CONTEXT_BACKWARD,
101 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
102 
103 #define MFMV_STACK_SIZE 3
104 typedef struct {
105  int_mv mfmv0;
106  uint8_t ref_frame_offset;
107 } TPL_MV_REF;
108 
109 typedef struct {
110  int_mv mv;
111  MV_REFERENCE_FRAME ref_frame;
112 } MV_REF;
113 
114 typedef struct RefCntBuffer {
115  // For a RefCntBuffer, the following are reference-holding variables:
116  // - cm->ref_frame_map[]
117  // - cm->cur_frame
118  // - cm->scaled_ref_buf[] (encoder only)
119  // - pbi->output_frame_index[] (decoder only)
120  // With that definition, 'ref_count' is the number of reference-holding
121  // variables that are currently referencing this buffer.
122  // For example:
123  // - suppose this buffer is at index 'k' in the buffer pool, and
124  // - Total 'n' of the variables / array elements above have value 'k' (that
125  // is, they are pointing to buffer at index 'k').
126  // Then, pool->frame_bufs[k].ref_count = n.
127  int ref_count;
128 
129  unsigned int order_hint;
130  unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
131 
132  // These variables are used only in encoder and compare the absolute
133  // display order hint to compute the relative distance and overcome
134  // the limitation of get_relative_dist() which returns incorrect
135  // distance when a very old frame is used as a reference.
136  unsigned int display_order_hint;
137  unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
138  // Frame's level within the hierarchical structure.
139  unsigned int pyramid_level;
140  MV_REF *mvs;
141  uint8_t *seg_map;
142  struct segmentation seg;
143  int mi_rows;
144  int mi_cols;
145  // Width and height give the size of the buffer (before any upscaling, unlike
146  // the sizes that can be derived from the buf structure)
147  int width;
148  int height;
149  WarpedMotionParams global_motion[REF_FRAMES];
150  int showable_frame; // frame can be used as show existing frame in future
151  uint8_t film_grain_params_present;
152  aom_film_grain_t film_grain_params;
153  aom_codec_frame_buffer_t raw_frame_buffer;
154  YV12_BUFFER_CONFIG buf;
155  int temporal_id; // Temporal layer ID of the frame
156  int spatial_id; // Spatial layer ID of the frame
157  FRAME_TYPE frame_type;
158 
159  // This is only used in the encoder but needs to be indexed per ref frame
160  // so it's extremely convenient to keep it here.
161  int interp_filter_selected[SWITCHABLE];
162 
163  // Inter frame reference frame delta for loop filter
164  int8_t ref_deltas[REF_FRAMES];
165 
166  // 0 = ZERO_MV, MV
167  int8_t mode_deltas[MAX_MODE_LF_DELTAS];
168 
169  FRAME_CONTEXT frame_context;
170 } RefCntBuffer;
171 
172 typedef struct BufferPool {
173 // Protect BufferPool from being accessed by several FrameWorkers at
174 // the same time during frame parallel decode.
175 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
176 // TODO(wtc): Remove this. See
177 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
178 #if CONFIG_MULTITHREAD
179  pthread_mutex_t pool_mutex;
180 #endif
181 
182  // Private data associated with the frame buffer callbacks.
183  void *cb_priv;
184 
186  aom_release_frame_buffer_cb_fn_t release_fb_cb;
187 
188  RefCntBuffer *frame_bufs;
189  uint8_t num_frame_bufs;
190 
191  // Frame buffers allocated internally by the codec.
192  InternalFrameBufferList int_frame_buffers;
193 } BufferPool;
194 
198 typedef struct {
200  uint16_t *colbuf[MAX_MB_PLANE];
202  uint16_t *linebuf[MAX_MB_PLANE];
204  uint16_t *srcbuf;
206  size_t allocated_colbuf_size[MAX_MB_PLANE];
208  size_t allocated_linebuf_size[MAX_MB_PLANE];
216  int cdef_strengths[CDEF_MAX_STRENGTHS];
218  int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
225 } CdefInfo;
226 
229 typedef struct {
230  int delta_q_present_flag;
231  // Resolution of delta quant
232  int delta_q_res;
233  int delta_lf_present_flag;
234  // Resolution of delta lf level
235  int delta_lf_res;
236  // This is a flag for number of deltas of loop filter level
237  // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
238  // 1: use separate deltas for each filter level
239  int delta_lf_multi;
240 } DeltaQInfo;
241 
242 typedef struct {
243  int enable_order_hint; // 0 - disable order hint, and related tools
244  int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
245  // frame_sign_bias
246  // if 0, enable_dist_wtd_comp and
247  // enable_ref_frame_mvs must be set as 0.
248  int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
249  // 1 - enable it
250  int enable_ref_frame_mvs; // 0 - disable ref frame mvs
251  // 1 - enable it
252 } OrderHintInfo;
253 
254 // Sequence header structure.
255 // Note: All syntax elements of sequence_header_obu that need to be
256 // bit-identical across multiple sequence headers must be part of this struct,
257 // so that consistency is checked by are_seq_headers_consistent() function.
258 // One exception is the last member 'op_params' that is ignored by
259 // are_seq_headers_consistent() function.
260 typedef struct SequenceHeader {
261  int num_bits_width;
262  int num_bits_height;
263  int max_frame_width;
264  int max_frame_height;
265  // Whether current and reference frame IDs are signaled in the bitstream.
266  // Frame id numbers are additional information that do not affect the
267  // decoding process, but provide decoders with a way of detecting missing
268  // reference frames so that appropriate action can be taken.
269  uint8_t frame_id_numbers_present_flag;
270  int frame_id_length;
271  int delta_frame_id_length;
272  BLOCK_SIZE sb_size; // Size of the superblock used for this frame
273  int mib_size; // Size of the superblock in units of MI blocks
274  int mib_size_log2; // Log 2 of above.
275 
276  OrderHintInfo order_hint_info;
277 
278  uint8_t force_screen_content_tools; // 0 - force off
279  // 1 - force on
280  // 2 - adaptive
281  uint8_t still_picture; // Video is a single frame still picture
282  uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
283  uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
284  // 1 - force to integer
285  // 2 - adaptive
286  uint8_t enable_filter_intra; // enables/disables filterintra
287  uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
288  uint8_t enable_interintra_compound; // enables/disables interintra_compound
289  uint8_t enable_masked_compound; // enables/disables masked compound
290  uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
291  // 1 - enable vert/horz filter selection
292  uint8_t enable_warped_motion; // 0 - disable warp for the sequence
293  // 1 - enable warp for the sequence
294  uint8_t enable_superres; // 0 - Disable superres for the sequence
295  // and no frame level superres flag
296  // 1 - Enable superres for the sequence
297  // enable per-frame superres flag
298  uint8_t enable_cdef; // To turn on/off CDEF
299  uint8_t enable_restoration; // To turn on/off loop restoration
300  BITSTREAM_PROFILE profile;
301 
302  // Color config.
303  aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
304  // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
305  uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
306  uint8_t monochrome; // Monochrome video
307  aom_color_primaries_t color_primaries;
308  aom_transfer_characteristics_t transfer_characteristics;
309  aom_matrix_coefficients_t matrix_coefficients;
310  int color_range;
311  int subsampling_x; // Chroma subsampling for x
312  int subsampling_y; // Chroma subsampling for y
313  aom_chroma_sample_position_t chroma_sample_position;
314  uint8_t separate_uv_delta_q;
315  uint8_t film_grain_params_present;
316 
317  // Operating point info.
318  int operating_points_cnt_minus_1;
319  int operating_point_idc[MAX_NUM_OPERATING_POINTS];
320  int timing_info_present;
321  aom_timing_info_t timing_info;
322  uint8_t decoder_model_info_present_flag;
323  aom_dec_model_info_t decoder_model_info;
324  uint8_t display_model_info_present_flag;
325  AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
326  uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
327 
328  // IMPORTANT: the op_params member must be at the end of the struct so that
329  // are_seq_headers_consistent() can be implemented with a memcmp() call.
330  // TODO(urvang): We probably don't need the +1 here.
331  aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
332 } SequenceHeader;
333 
334 typedef struct {
335  int skip_mode_allowed;
336  int skip_mode_flag;
337  int ref_frame_idx_0;
338  int ref_frame_idx_1;
339 } SkipModeInfo;
340 
341 typedef struct {
342  FRAME_TYPE frame_type;
343  REFERENCE_MODE reference_mode;
344 
345  unsigned int order_hint;
346  unsigned int display_order_hint;
347  // Frame's level within the hierarchical structure.
348  unsigned int pyramid_level;
349  unsigned int frame_number;
350  SkipModeInfo skip_mode_info;
351  int refresh_frame_flags; // Which ref frames are overwritten by this frame
352  int frame_refs_short_signaling;
353 } CurrentFrame;
354 
360 typedef struct {
408  TX_MODE tx_mode;
409  InterpFilter interp_filter;
423  REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
424 } FeatureFlags;
425 
429 typedef struct CommonTileParams {
430  int cols;
431  int rows;
439 
446 
451  int log2_cols;
452  int log2_rows;
453  int width;
454  int height;
476  int min_log2;
481  int col_start_sb[MAX_TILE_COLS + 1];
486  int row_start_sb[MAX_TILE_ROWS + 1];
490  unsigned int large_scale;
496  unsigned int single_tile_decoding;
498 
508  int mb_rows;
513  int mb_cols;
514 
518  int MBs;
519 
524  int mi_rows;
529  int mi_cols;
530 
552  BLOCK_SIZE mi_alloc_bsize;
553 
570 
577  TX_TYPE *tx_type_map;
578 
587  void (*free_mi)(struct CommonModeInfoParams *mi_params);
592  void (*setup_mi)(struct CommonModeInfoParams *mi_params);
602  void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
603  int height, BLOCK_SIZE min_partition_size);
605 };
606 
607 typedef struct CommonQuantParams CommonQuantParams;
616 
622 
631 
642 
643  /*
644  * Note: The qindex per superblock may have a delta from the qindex obtained
645  * at frame level from parameters above, based on 'cm->delta_q_info'.
646  */
647 
655  int16_t y_dequant_QTX[MAX_SEGMENTS][2];
656  int16_t u_dequant_QTX[MAX_SEGMENTS][2];
657  int16_t v_dequant_QTX[MAX_SEGMENTS][2];
667  const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
671  const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
681  const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
685  const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
689  const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
709 };
710 
711 typedef struct CommonContexts CommonContexts;
720  PARTITION_CONTEXT **partition;
721 
730  ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
731 
738  TXFM_CONTEXT **txfm;
739 
747 };
748 
752 typedef struct AV1Common {
756  CurrentFrame current_frame;
760  struct aom_internal_error_info *error;
761 
777  int width;
778  int height;
810 
817  uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
824 
828  RefCntBuffer *prev_frame;
829 
834  RefCntBuffer *cur_frame;
835 
856  int remapped_ref_idx[REF_FRAMES];
857 
863  struct scale_factors sf_identity;
864 
871  struct scale_factors ref_scale_factors[REF_FRAMES];
872 
880  RefCntBuffer *ref_frame_map[REF_FRAMES];
881 
888 
896 
903 
908 
913 
914 #if CONFIG_ENTROPY_STATS
918  int coef_cdf_category;
919 #endif // CONFIG_ENTROPY_STATS
920 
925 
929  struct segmentation seg;
930 
935 
940  loop_filter_info_n lf_info;
941  struct loopfilter lf;
948  RestorationInfo rst_info[MAX_MB_PLANE];
949  int32_t *rst_tmpbuf;
950  RestorationLineBuffers *rlbs;
958 
962  aom_film_grain_t film_grain_params;
963 
967  DeltaQInfo delta_q_info;
968 
972  WarpedMotionParams global_motion[REF_FRAMES];
973 
978  SequenceHeader *seq_params;
979 
983  FRAME_CONTEXT *fc;
989  FRAME_CONTEXT *default_frame_context;
990 
995 
999  BufferPool *buffer_pool;
1000 
1008 
1014  int ref_frame_id[REF_FRAMES];
1024  TPL_MV_REF *tpl_mvs;
1033  int ref_frame_sign_bias[REF_FRAMES];
1039  int8_t ref_frame_side[REF_FRAMES];
1040 
1046 
1052 
1053 #if TXCOEFF_TIMER
1054  int64_t cum_txcoeff_timer;
1055  int64_t txcoeff_timer;
1056  int txb_count;
1057 #endif // TXCOEFF_TIMER
1058 
1059 #if TXCOEFF_COST_TIMER
1060  int64_t cum_txcoeff_cost_timer;
1061  int64_t txcoeff_cost_timer;
1062  int64_t txcoeff_cost_count;
1063 #endif // TXCOEFF_COST_TIMER
1064 } AV1_COMMON;
1065 
1068 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1069 // frame reference count.
1070 static void lock_buffer_pool(BufferPool *const pool) {
1071 #if CONFIG_MULTITHREAD
1072  pthread_mutex_lock(&pool->pool_mutex);
1073 #else
1074  (void)pool;
1075 #endif
1076 }
1077 
1078 static void unlock_buffer_pool(BufferPool *const pool) {
1079 #if CONFIG_MULTITHREAD
1080  pthread_mutex_unlock(&pool->pool_mutex);
1081 #else
1082  (void)pool;
1083 #endif
1084 }
1085 
1086 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1087  if (index < 0 || index >= REF_FRAMES) return NULL;
1088  if (cm->ref_frame_map[index] == NULL) return NULL;
1089  return &cm->ref_frame_map[index]->buf;
1090 }
1091 
1092 static INLINE int get_free_fb(AV1_COMMON *cm) {
1093  RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1094  int i;
1095 
1096  lock_buffer_pool(cm->buffer_pool);
1097  const int num_frame_bufs = cm->buffer_pool->num_frame_bufs;
1098  for (i = 0; i < num_frame_bufs; ++i)
1099  if (frame_bufs[i].ref_count == 0) break;
1100 
1101  if (i != num_frame_bufs) {
1102  if (frame_bufs[i].buf.use_external_reference_buffers) {
1103  // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1104  // external reference buffers. Restore the buffer pointers to point to the
1105  // internally allocated memory.
1106  YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1107  ybf->y_buffer = ybf->store_buf_adr[0];
1108  ybf->u_buffer = ybf->store_buf_adr[1];
1109  ybf->v_buffer = ybf->store_buf_adr[2];
1110  ybf->use_external_reference_buffers = 0;
1111  }
1112 
1113  frame_bufs[i].ref_count = 1;
1114  } else {
1115  // We should never run out of free buffers. If this assertion fails, there
1116  // is a reference leak.
1117  assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1118  // Reset i to be INVALID_IDX to indicate no free buffer found.
1119  i = INVALID_IDX;
1120  }
1121 
1122  unlock_buffer_pool(cm->buffer_pool);
1123  return i;
1124 }
1125 
1126 static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1127  // Release the previously-used frame-buffer
1128  if (cm->cur_frame != NULL) {
1129  --cm->cur_frame->ref_count;
1130  cm->cur_frame = NULL;
1131  }
1132 
1133  // Assign a new framebuffer
1134  const int new_fb_idx = get_free_fb(cm);
1135  if (new_fb_idx == INVALID_IDX) return NULL;
1136 
1137  cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1138 #if CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1139  aom_invalidate_pyramid(cm->cur_frame->buf.y_pyramid);
1140  av1_invalidate_corner_list(cm->cur_frame->buf.corners);
1141 #endif // CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1142  av1_zero(cm->cur_frame->interp_filter_selected);
1143  return cm->cur_frame;
1144 }
1145 
1146 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1147 // counts accordingly.
1148 static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1149  RefCntBuffer *rhs_ptr) {
1150  RefCntBuffer *const old_ptr = *lhs_ptr;
1151  if (old_ptr != NULL) {
1152  assert(old_ptr->ref_count > 0);
1153  // One less reference to the buffer at 'old_ptr', so decrease ref count.
1154  --old_ptr->ref_count;
1155  }
1156 
1157  *lhs_ptr = rhs_ptr;
1158  // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1159  ++rhs_ptr->ref_count;
1160 }
1161 
1162 static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
1163  return cm->current_frame.frame_type == KEY_FRAME ||
1164  cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1165 }
1166 
1167 static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
1168  return cm->current_frame.frame_type == S_FRAME;
1169 }
1170 
1171 // These functions take a reference frame label between LAST_FRAME and
1172 // EXTREF_FRAME inclusive. Note that this is different to the indexing
1173 // previously used by the frame_refs[] array.
1174 static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1175  const MV_REFERENCE_FRAME ref_frame) {
1176  return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1177  ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1178  : INVALID_IDX;
1179 }
1180 
1181 static INLINE RefCntBuffer *get_ref_frame_buf(
1182  const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1183  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1184  return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1185 }
1186 
1187 // Both const and non-const versions of this function are provided so that it
1188 // can be used with a const AV1_COMMON if needed.
1189 static INLINE const struct scale_factors *get_ref_scale_factors_const(
1190  const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1191  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1192  return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1193 }
1194 
1195 static INLINE struct scale_factors *get_ref_scale_factors(
1196  AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1197  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1198  return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1199 }
1200 
1201 static INLINE RefCntBuffer *get_primary_ref_frame_buf(
1202  const AV1_COMMON *const cm) {
1203  const int primary_ref_frame = cm->features.primary_ref_frame;
1204  if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1205  const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1206  return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1207 }
1208 
1209 // Returns 1 if this frame might allow mvs from some reference frame.
1210 static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1211  return !cm->features.error_resilient_mode &&
1212  cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1213  cm->seq_params->order_hint_info.enable_order_hint &&
1214  !frame_is_intra_only(cm);
1215 }
1216 
1217 // Returns 1 if this frame might use warped_motion
1218 static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1219  return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1220  cm->seq_params->enable_warped_motion;
1221 }
1222 
1223 static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1224  const int buf_rows = buf->mi_rows;
1225  const int buf_cols = buf->mi_cols;
1226  const CommonModeInfoParams *const mi_params = &cm->mi_params;
1227 
1228  if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1229  buf_cols != mi_params->mi_cols) {
1230  aom_free(buf->mvs);
1231  buf->mi_rows = mi_params->mi_rows;
1232  buf->mi_cols = mi_params->mi_cols;
1233  CHECK_MEM_ERROR(cm, buf->mvs,
1234  (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1235  ((mi_params->mi_cols + 1) >> 1),
1236  sizeof(*buf->mvs)));
1237  aom_free(buf->seg_map);
1238  CHECK_MEM_ERROR(
1239  cm, buf->seg_map,
1240  (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1241  sizeof(*buf->seg_map)));
1242  }
1243 
1244  const int mem_size =
1245  ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1246 
1247  if (cm->tpl_mvs == NULL || cm->tpl_mvs_mem_size < mem_size) {
1248  aom_free(cm->tpl_mvs);
1249  CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1250  (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1251  cm->tpl_mvs_mem_size = mem_size;
1252  }
1253 }
1254 
1255 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1256 
1257 static INLINE int av1_num_planes(const AV1_COMMON *cm) {
1258  return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1259 }
1260 
1261 static INLINE void av1_init_above_context(CommonContexts *above_contexts,
1262  int num_planes, int tile_row,
1263  MACROBLOCKD *xd) {
1264  for (int i = 0; i < num_planes; ++i) {
1265  xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1266  }
1267  xd->above_partition_context = above_contexts->partition[tile_row];
1268  xd->above_txfm_context = above_contexts->txfm[tile_row];
1269 }
1270 
1271 static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1272  const int num_planes = av1_num_planes(cm);
1273  const CommonQuantParams *const quant_params = &cm->quant_params;
1274 
1275  for (int i = 0; i < num_planes; ++i) {
1276  if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1277  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1278  sizeof(quant_params->y_dequant_QTX));
1279  memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1280  sizeof(quant_params->y_iqmatrix));
1281 
1282  } else {
1283  if (i == AOM_PLANE_U) {
1284  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1285  sizeof(quant_params->u_dequant_QTX));
1286  memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1287  sizeof(quant_params->u_iqmatrix));
1288  } else {
1289  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1290  sizeof(quant_params->v_dequant_QTX));
1291  memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1292  sizeof(quant_params->v_iqmatrix));
1293  }
1294  }
1295  }
1296  xd->mi_stride = cm->mi_params.mi_stride;
1297  xd->error_info = cm->error;
1298  cfl_init(&xd->cfl, cm->seq_params);
1299 }
1300 
1301 static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1302  const int num_planes) {
1303  int i;
1304  int row_offset = mi_row;
1305  int col_offset = mi_col;
1306  for (i = 0; i < num_planes; ++i) {
1307  struct macroblockd_plane *const pd = &xd->plane[i];
1308  // Offset the buffer pointer
1309  const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1310  if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1311  row_offset = mi_row - 1;
1312  if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1313  col_offset = mi_col - 1;
1314  int above_idx = col_offset;
1315  int left_idx = row_offset & MAX_MIB_MASK;
1316  pd->above_entropy_context =
1317  &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1318  pd->left_entropy_context =
1319  &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1320  }
1321 }
1322 
1323 static INLINE int calc_mi_size(int len) {
1324  // len is in mi units. Align to a multiple of SBs.
1325  return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1326 }
1327 
1328 static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1329  const int num_planes) {
1330  int i;
1331  for (i = 0; i < num_planes; i++) {
1332  xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1333  xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1334 
1335  xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1336  xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1337  }
1338 }
1339 
1340 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1341  int mi_row, int bh, int mi_col, int bw,
1342  int mi_rows, int mi_cols) {
1343  xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1344  xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1345  xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1346  xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1347 
1348  xd->mi_row = mi_row;
1349  xd->mi_col = mi_col;
1350 
1351  // Are edges available for intra prediction?
1352  xd->up_available = (mi_row > tile->mi_row_start);
1353 
1354  const int ss_x = xd->plane[1].subsampling_x;
1355  const int ss_y = xd->plane[1].subsampling_y;
1356 
1357  xd->left_available = (mi_col > tile->mi_col_start);
1360  if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1361  xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1362  if (ss_y && bh < mi_size_high[BLOCK_8X8])
1363  xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1364  if (xd->up_available) {
1365  xd->above_mbmi = xd->mi[-xd->mi_stride];
1366  } else {
1367  xd->above_mbmi = NULL;
1368  }
1369 
1370  if (xd->left_available) {
1371  xd->left_mbmi = xd->mi[-1];
1372  } else {
1373  xd->left_mbmi = NULL;
1374  }
1375 
1376  const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1377  ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1378  xd->is_chroma_ref = chroma_ref;
1379  if (chroma_ref) {
1380  // To help calculate the "above" and "left" chroma blocks, note that the
1381  // current block may cover multiple luma blocks (e.g., if partitioned into
1382  // 4x4 luma blocks).
1383  // First, find the top-left-most luma block covered by this chroma block
1384  MB_MODE_INFO **base_mi =
1385  &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1386 
1387  // Then, we consider the luma region covered by the left or above 4x4 chroma
1388  // prediction. We want to point to the chroma reference block in that
1389  // region, which is the bottom-right-most mi unit.
1390  // This leads to the following offsets:
1391  MB_MODE_INFO *chroma_above_mi =
1392  xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1393  xd->chroma_above_mbmi = chroma_above_mi;
1394 
1395  MB_MODE_INFO *chroma_left_mi =
1396  xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1397  xd->chroma_left_mbmi = chroma_left_mi;
1398  }
1399 
1400  xd->height = bh;
1401  xd->width = bw;
1402 
1403  xd->is_last_vertical_rect = 0;
1404  if (xd->width < xd->height) {
1405  if (!((mi_col + xd->width) & (xd->height - 1))) {
1406  xd->is_last_vertical_rect = 1;
1407  }
1408  }
1409 
1410  xd->is_first_horizontal_rect = 0;
1411  if (xd->width > xd->height)
1412  if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1413 }
1414 
1415 static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1416  const MB_MODE_INFO *above_mi,
1417  const MB_MODE_INFO *left_mi) {
1418  const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1419  const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1420  const int above_ctx = intra_mode_context[above];
1421  const int left_ctx = intra_mode_context[left];
1422  return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1423 }
1424 
1425 static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
1426  int mi_col, BLOCK_SIZE subsize,
1427  BLOCK_SIZE bsize) {
1428  PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1429  PARTITION_CONTEXT *const left_ctx =
1430  xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1431 
1432  const int bw = mi_size_wide[bsize];
1433  const int bh = mi_size_high[bsize];
1434  memset(above_ctx, partition_context_lookup[subsize].above, bw);
1435  memset(left_ctx, partition_context_lookup[subsize].left, bh);
1436 }
1437 
1438 static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1439  int subsampling_x, int subsampling_y) {
1440  assert(bsize < BLOCK_SIZES_ALL);
1441  const int bw = mi_size_wide[bsize];
1442  const int bh = mi_size_high[bsize];
1443  int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1444  ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1445  return ref_pos;
1446 }
1447 
1448 static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1449  size_t element) {
1450  assert(cdf != NULL);
1451  return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1452 }
1453 
1454 static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
1455  const aom_cdf_prob *const in,
1456  BLOCK_SIZE bsize) {
1457  (void)bsize;
1458  out[0] = CDF_PROB_TOP;
1459  out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1460  out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1461  out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1462  out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1463  out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1464  if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1465  out[0] = AOM_ICDF(out[0]);
1466  out[1] = AOM_ICDF(CDF_PROB_TOP);
1467 }
1468 
1469 static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
1470  const aom_cdf_prob *const in,
1471  BLOCK_SIZE bsize) {
1472  (void)bsize;
1473  out[0] = CDF_PROB_TOP;
1474  out[0] -= cdf_element_prob(in, PARTITION_VERT);
1475  out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1476  out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1477  out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1478  out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1479  if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1480  out[0] = AOM_ICDF(out[0]);
1481  out[1] = AOM_ICDF(CDF_PROB_TOP);
1482 }
1483 
1484 static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1485  int mi_col, BLOCK_SIZE subsize,
1486  BLOCK_SIZE bsize,
1487  PARTITION_TYPE partition) {
1488  if (bsize >= BLOCK_8X8) {
1489  const int hbs = mi_size_wide[bsize] / 2;
1490  BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1491  switch (partition) {
1492  case PARTITION_SPLIT:
1493  if (bsize != BLOCK_8X8) break;
1494  AOM_FALLTHROUGH_INTENDED;
1495  case PARTITION_NONE:
1496  case PARTITION_HORZ:
1497  case PARTITION_VERT:
1498  case PARTITION_HORZ_4:
1499  case PARTITION_VERT_4:
1500  update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1501  break;
1502  case PARTITION_HORZ_A:
1503  update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1504  update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1505  break;
1506  case PARTITION_HORZ_B:
1507  update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1508  update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1509  break;
1510  case PARTITION_VERT_A:
1511  update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1512  update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1513  break;
1514  case PARTITION_VERT_B:
1515  update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1516  update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1517  break;
1518  default: assert(0 && "Invalid partition type");
1519  }
1520  }
1521 }
1522 
1523 static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1524  int mi_col, BLOCK_SIZE bsize) {
1525  const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1526  const PARTITION_CONTEXT *left_ctx =
1527  xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1528  // Minimum partition point is 8x8. Offset the bsl accordingly.
1529  const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1530  int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1531 
1532  assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1533  assert(bsl >= 0);
1534 
1535  return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1536 }
1537 
1538 // Return the number of elements in the partition CDF when
1539 // partitioning the (square) block with luma block size of bsize.
1540 static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1541  if (bsize <= BLOCK_8X8)
1542  return PARTITION_TYPES;
1543  else if (bsize == BLOCK_128X128)
1544  return EXT_PARTITION_TYPES - 2;
1545  else
1546  return EXT_PARTITION_TYPES;
1547 }
1548 
1549 static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1550  int plane) {
1551  assert(bsize < BLOCK_SIZES_ALL);
1552  int max_blocks_wide = block_size_wide[bsize];
1553 
1554  if (xd->mb_to_right_edge < 0) {
1555  const struct macroblockd_plane *const pd = &xd->plane[plane];
1556  max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1557  }
1558 
1559  // Scale the width in the transform block unit.
1560  return max_blocks_wide >> MI_SIZE_LOG2;
1561 }
1562 
1563 static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1564  int plane) {
1565  int max_blocks_high = block_size_high[bsize];
1566 
1567  if (xd->mb_to_bottom_edge < 0) {
1568  const struct macroblockd_plane *const pd = &xd->plane[plane];
1569  max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1570  }
1571 
1572  // Scale the height in the transform block unit.
1573  return max_blocks_high >> MI_SIZE_LOG2;
1574 }
1575 
1576 static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
1577  const MACROBLOCKD *xd,
1578  int mi_col_start, int mi_col_end,
1579  const int tile_row) {
1580  const SequenceHeader *const seq_params = cm->seq_params;
1581  const int num_planes = av1_num_planes(cm);
1582  const int width = mi_col_end - mi_col_start;
1583  const int aligned_width =
1584  ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1585  const int offset_y = mi_col_start;
1586  const int width_y = aligned_width;
1587  const int offset_uv = offset_y >> seq_params->subsampling_x;
1588  const int width_uv = width_y >> seq_params->subsampling_x;
1589  CommonContexts *const above_contexts = &cm->above_contexts;
1590 
1591  av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1592  if (num_planes > 1) {
1593  if (above_contexts->entropy[1][tile_row] &&
1594  above_contexts->entropy[2][tile_row]) {
1595  av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1596  width_uv);
1597  av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1598  width_uv);
1599  } else {
1600  aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1601  "Invalid value of planes");
1602  }
1603  }
1604 
1605  av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1606  aligned_width);
1607 
1608  memset(above_contexts->txfm[tile_row] + mi_col_start,
1609  tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1610 }
1611 
1612 static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1613  av1_zero(xd->left_entropy_context);
1614  av1_zero(xd->left_partition_context);
1615 
1616  memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1617  sizeof(xd->left_txfm_context_buffer));
1618 }
1619 
1620 static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1621  int i;
1622  for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1623 }
1624 
1625 static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1626  const MACROBLOCKD *xd) {
1627  uint8_t bw = tx_size_wide[tx_size];
1628  uint8_t bh = tx_size_high[tx_size];
1629 
1630  if (skip) {
1631  bw = n4_w * MI_SIZE;
1632  bh = n4_h * MI_SIZE;
1633  }
1634 
1635  set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1636  set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1637 }
1638 
1639 static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1640  int mi_row, int mi_col) {
1641  return mi_row * mi_params->mi_stride + mi_col;
1642 }
1643 
1644 static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1645  int mi_row, int mi_col) {
1646  const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1647  const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1648  const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1649 
1650  return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1651 }
1652 
1653 // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
1654 static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1655  MACROBLOCKD *const xd, int mi_row,
1656  int mi_col) {
1657  // 'mi_grid_base' should point to appropriate memory in 'mi'.
1658  const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1659  const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1660  mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1661  // 'xd->mi' should point to an offset in 'mi_grid_base';
1662  xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1663  // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1664  xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1665  xd->tx_type_map_stride = mi_params->mi_stride;
1666 }
1667 
1668 static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1669  TXFM_CONTEXT *left_ctx,
1670  TX_SIZE tx_size, TX_SIZE txb_size) {
1671  BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1672  int bh = mi_size_high[bsize];
1673  int bw = mi_size_wide[bsize];
1674  uint8_t txw = tx_size_wide[tx_size];
1675  uint8_t txh = tx_size_high[tx_size];
1676  int i;
1677  for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1678  for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1679 }
1680 
1681 static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1682  switch (tx_dim) {
1683  case 128:
1684  case 64: return TX_64X64; break;
1685  case 32: return TX_32X32; break;
1686  case 16: return TX_16X16; break;
1687  case 8: return TX_8X8; break;
1688  default: return TX_4X4;
1689  }
1690 }
1691 
1692 static INLINE TX_SIZE get_tx_size(int width, int height) {
1693  if (width == height) {
1694  return get_sqr_tx_size(width);
1695  }
1696  if (width < height) {
1697  if (width + width == height) {
1698  switch (width) {
1699  case 4: return TX_4X8; break;
1700  case 8: return TX_8X16; break;
1701  case 16: return TX_16X32; break;
1702  case 32: return TX_32X64; break;
1703  }
1704  } else {
1705  switch (width) {
1706  case 4: return TX_4X16; break;
1707  case 8: return TX_8X32; break;
1708  case 16: return TX_16X64; break;
1709  }
1710  }
1711  } else {
1712  if (height + height == width) {
1713  switch (height) {
1714  case 4: return TX_8X4; break;
1715  case 8: return TX_16X8; break;
1716  case 16: return TX_32X16; break;
1717  case 32: return TX_64X32; break;
1718  }
1719  } else {
1720  switch (height) {
1721  case 4: return TX_16X4; break;
1722  case 8: return TX_32X8; break;
1723  case 16: return TX_64X16; break;
1724  }
1725  }
1726  }
1727  assert(0);
1728  return TX_4X4;
1729 }
1730 
1731 static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1732  const TXFM_CONTEXT *const left_ctx,
1733  BLOCK_SIZE bsize, TX_SIZE tx_size) {
1734  const uint8_t txw = tx_size_wide[tx_size];
1735  const uint8_t txh = tx_size_high[tx_size];
1736  const int above = *above_ctx < txw;
1737  const int left = *left_ctx < txh;
1738  int category = TXFM_PARTITION_CONTEXTS;
1739 
1740  // dummy return, not used by others.
1741  if (tx_size <= TX_4X4) return 0;
1742 
1743  TX_SIZE max_tx_size =
1744  get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1745 
1746  if (max_tx_size >= TX_8X8) {
1747  category =
1748  (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1749  (TX_SIZES - 1 - max_tx_size) * 2;
1750  }
1751  assert(category != TXFM_PARTITION_CONTEXTS);
1752  return category * 3 + above + left;
1753 }
1754 
1755 // Compute the next partition in the direction of the sb_type stored in the mi
1756 // array, starting with bsize.
1757 static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1758  int mi_row, int mi_col,
1759  BLOCK_SIZE bsize) {
1760  const CommonModeInfoParams *const mi_params = &cm->mi_params;
1761  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1762  return PARTITION_INVALID;
1763 
1764  const int offset = mi_row * mi_params->mi_stride + mi_col;
1765  MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1766  const BLOCK_SIZE subsize = mi[0]->bsize;
1767 
1768  assert(bsize < BLOCK_SIZES_ALL);
1769 
1770  if (subsize == bsize) return PARTITION_NONE;
1771 
1772  const int bhigh = mi_size_high[bsize];
1773  const int bwide = mi_size_wide[bsize];
1774  const int sshigh = mi_size_high[subsize];
1775  const int sswide = mi_size_wide[subsize];
1776 
1777  if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1778  mi_col + bhigh / 2 < mi_params->mi_cols) {
1779  // In this case, the block might be using an extended partition
1780  // type.
1781  const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1782  const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1783 
1784  if (sswide == bwide) {
1785  // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1786  // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1787  // half was split.
1788  if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1789  assert(sshigh * 2 == bhigh);
1790 
1791  if (mbmi_below->bsize == subsize)
1792  return PARTITION_HORZ;
1793  else
1794  return PARTITION_HORZ_B;
1795  } else if (sshigh == bhigh) {
1796  // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1797  // PARTITION_VERT_B. To distinguish the latter two, check if the right
1798  // half was split.
1799  if (sswide * 4 == bwide) return PARTITION_VERT_4;
1800  assert(sswide * 2 == bhigh);
1801 
1802  if (mbmi_right->bsize == subsize)
1803  return PARTITION_VERT;
1804  else
1805  return PARTITION_VERT_B;
1806  } else {
1807  // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1808  // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1809  // dimensions, we immediately know this is a split (which will recurse to
1810  // get to subsize). Otherwise look down and to the right. With
1811  // PARTITION_VERT_A, the right block will have height bhigh; with
1812  // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1813  // it's PARTITION_SPLIT.
1814  if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1815 
1816  if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1817  if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1818 
1819  return PARTITION_SPLIT;
1820  }
1821  }
1822  const int vert_split = sswide < bwide;
1823  const int horz_split = sshigh < bhigh;
1824  const int split_idx = (vert_split << 1) | horz_split;
1825  assert(split_idx != 0);
1826 
1827  static const PARTITION_TYPE base_partitions[4] = {
1828  PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1829  };
1830 
1831  return base_partitions[split_idx];
1832 }
1833 
1834 static INLINE void set_sb_size(SequenceHeader *const seq_params,
1835  BLOCK_SIZE sb_size) {
1836  seq_params->sb_size = sb_size;
1837  seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1838  seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1839 }
1840 
1841 // Returns true if the frame is fully lossless at the coded resolution.
1842 // Note: If super-resolution is used, such a frame will still NOT be lossless at
1843 // the upscaled resolution.
1844 static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1845  const MACROBLOCKD *xd) {
1846  int coded_lossless = 1;
1847  if (cm->seg.enabled) {
1848  for (int i = 0; i < MAX_SEGMENTS; ++i) {
1849  if (!xd->lossless[i]) {
1850  coded_lossless = 0;
1851  break;
1852  }
1853  }
1854  } else {
1855  coded_lossless = xd->lossless[0];
1856  }
1857  return coded_lossless;
1858 }
1859 
1860 static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1861  return seq_level_idx == SEQ_LEVEL_MAX ||
1862  (seq_level_idx < SEQ_LEVELS &&
1863  // The following levels are currently undefined.
1864  seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1865  seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1866  seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3
1867 #if !CONFIG_CWG_C013
1868  && seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1869  seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3 &&
1870  seq_level_idx != SEQ_LEVEL_8_0 && seq_level_idx != SEQ_LEVEL_8_1 &&
1871  seq_level_idx != SEQ_LEVEL_8_2 && seq_level_idx != SEQ_LEVEL_8_3
1872 #endif
1873  );
1874 }
1875 
1878 #ifdef __cplusplus
1879 } // extern "C"
1880 #endif
1881 
1882 #endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
int(* aom_get_frame_buffer_cb_fn_t)(void *priv, size_t min_size, aom_codec_frame_buffer_t *fb)
get frame buffer callback prototype
Definition: aom_frame_buffer.h:64
int(* aom_release_frame_buffer_cb_fn_t)(void *priv, aom_codec_frame_buffer_t *fb)
release frame buffer callback prototype
Definition: aom_frame_buffer.h:77
#define AOM_PLANE_U
Definition: aom_image.h:209
enum aom_chroma_sample_position aom_chroma_sample_position_t
List of chroma sample positions.
enum aom_transfer_characteristics aom_transfer_characteristics_t
List of supported transfer functions.
enum aom_color_primaries aom_color_primaries_t
List of supported color primaries.
enum aom_matrix_coefficients aom_matrix_coefficients_t
List of supported matrix coefficients.
enum aom_bit_depth aom_bit_depth_t
Bit depth for codecThis enumeration determines the bit depth of the codec.
@ AOM_CODEC_CORRUPT_FRAME
The coded data for this stream is corrupt or incomplete.
Definition: aom_codec.h:195
Top level common structure used by both encoder and decoder.
Definition: av1_common_int.h:752
uint8_t * last_frame_seg_map
Definition: av1_common_int.h:934
RestorationInfo rst_info[3]
Definition: av1_common_int.h:948
WarpedMotionParams global_motion[REF_FRAMES]
Definition: av1_common_int.h:972
int superres_upscaled_width
Definition: av1_common_int.h:801
int8_t ref_frame_side[REF_FRAMES]
Definition: av1_common_int.h:1039
struct scale_factors ref_scale_factors[REF_FRAMES]
Definition: av1_common_int.h:871
RefCntBuffer * prev_frame
Definition: av1_common_int.h:828
FRAME_CONTEXT * default_frame_context
Definition: av1_common_int.h:989
int ref_frame_id[REF_FRAMES]
Definition: av1_common_int.h:1014
int superres_upscaled_height
Definition: av1_common_int.h:802
DeltaQInfo delta_q_info
Definition: av1_common_int.h:967
SequenceHeader * seq_params
Definition: av1_common_int.h:978
int width
Definition: av1_common_int.h:777
RefCntBuffer * cur_frame
Definition: av1_common_int.h:834
CdefInfo cdef_info
Definition: av1_common_int.h:957
loop_filter_info_n lf_info
Definition: av1_common_int.h:940
CurrentFrame current_frame
Definition: av1_common_int.h:756
int remapped_ref_idx[REF_FRAMES]
Definition: av1_common_int.h:856
RestorationLineBuffers * rlbs
Definition: av1_common_int.h:950
aom_film_grain_t film_grain_params
Definition: av1_common_int.h:962
int show_existing_frame
Definition: av1_common_int.h:902
uint32_t buffer_removal_times[(8 *4)+1]
Definition: av1_common_int.h:817
int temporal_layer_id
Definition: av1_common_int.h:1045
struct aom_internal_error_info * error
Definition: av1_common_int.h:760
int showable_frame
Definition: av1_common_int.h:895
int tpl_mvs_mem_size
Definition: av1_common_int.h:1028
uint32_t frame_presentation_time
Definition: av1_common_int.h:823
struct loopfilter lf
Definition: av1_common_int.h:941
int spatial_layer_id
Definition: av1_common_int.h:1051
FeatureFlags features
Definition: av1_common_int.h:907
struct scale_factors sf_identity
Definition: av1_common_int.h:863
YV12_BUFFER_CONFIG rst_frame
Definition: av1_common_int.h:951
CommonModeInfoParams mi_params
Definition: av1_common_int.h:912
uint8_t superres_scale_denominator
Definition: av1_common_int.h:809
int show_frame
Definition: av1_common_int.h:887
struct segmentation seg
Definition: av1_common_int.h:929
CommonQuantParams quant_params
Definition: av1_common_int.h:924
TPL_MV_REF * tpl_mvs
Definition: av1_common_int.h:1024
int current_frame_id
Definition: av1_common_int.h:1013
int32_t * rst_tmpbuf
Definition: av1_common_int.h:949
RefCntBuffer * ref_frame_map[REF_FRAMES]
Definition: av1_common_int.h:880
CommonContexts above_contexts
Definition: av1_common_int.h:1007
CommonTileParams tiles
Definition: av1_common_int.h:994
BufferPool * buffer_pool
Definition: av1_common_int.h:999
int ref_frame_sign_bias[REF_FRAMES]
Definition: av1_common_int.h:1033
FRAME_CONTEXT * fc
Definition: av1_common_int.h:983
int height
Definition: av1_common_int.h:778
int render_width
Definition: av1_common_int.h:788
int render_height
Definition: av1_common_int.h:789
Parameters related to CDEF.
Definition: av1_common_int.h:198
int cdef_bits
Number of CDEF strength values in bits.
Definition: av1_common_int.h:220
int allocated_mi_rows
Number of rows in the frame in 4 pixel.
Definition: av1_common_int.h:222
int allocated_num_workers
Number of CDEF workers.
Definition: av1_common_int.h:224
size_t allocated_srcbuf_size
CDEF intermediate buffer size.
Definition: av1_common_int.h:210
int nb_cdef_strengths
Number of CDEF strength values.
Definition: av1_common_int.h:214
int cdef_damping
CDEF damping factor.
Definition: av1_common_int.h:212
uint16_t * srcbuf
CDEF intermediate buffer.
Definition: av1_common_int.h:204
Contexts used for transmitting various symbols in the bitstream.
Definition: av1_common_int.h:715
PARTITION_CONTEXT ** partition
Definition: av1_common_int.h:720
int num_planes
Definition: av1_common_int.h:744
ENTROPY_CONTEXT ** entropy[3]
Definition: av1_common_int.h:730
int num_tile_rows
Definition: av1_common_int.h:745
int num_mi_cols
Definition: av1_common_int.h:746
TXFM_CONTEXT ** txfm
Definition: av1_common_int.h:738
Params related to MB_MODE_INFO arrays and related info.
Definition: av1_common_int.h:503
int mb_cols
Definition: av1_common_int.h:513
MB_MODE_INFO * mi_alloc
Definition: av1_common_int.h:537
int mi_rows
Definition: av1_common_int.h:524
void(* setup_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:592
void(* free_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:587
int mi_cols
Definition: av1_common_int.h:529
int mi_alloc_size
Definition: av1_common_int.h:541
void(* set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, int height, BLOCK_SIZE min_partition_size)
Definition: av1_common_int.h:602
int MBs
Definition: av1_common_int.h:518
TX_TYPE * tx_type_map
Definition: av1_common_int.h:577
int mi_alloc_stride
Definition: av1_common_int.h:545
int mi_grid_size
Definition: av1_common_int.h:565
int mi_stride
Definition: av1_common_int.h:569
int mb_rows
Definition: av1_common_int.h:508
MB_MODE_INFO ** mi_grid_base
Definition: av1_common_int.h:561
BLOCK_SIZE mi_alloc_bsize
Definition: av1_common_int.h:552
Parameters related to quantization at the frame level.
Definition: av1_common_int.h:611
int u_ac_delta_q
Definition: av1_common_int.h:636
const qm_val_t * u_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:685
int qmatrix_level_v
Definition: av1_common_int.h:707
const qm_val_t * giqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:667
int16_t u_dequant_QTX[8][2]
Definition: av1_common_int.h:656
const qm_val_t * y_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:681
int qmatrix_level_y
Definition: av1_common_int.h:705
int v_ac_delta_q
Definition: av1_common_int.h:641
bool using_qmatrix
Definition: av1_common_int.h:698
int u_dc_delta_q
Definition: av1_common_int.h:626
int qmatrix_level_u
Definition: av1_common_int.h:706
int base_qindex
Definition: av1_common_int.h:615
int16_t v_dequant_QTX[8][2]
Definition: av1_common_int.h:657
const qm_val_t * v_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:689
int16_t y_dequant_QTX[8][2]
Definition: av1_common_int.h:655
int v_dc_delta_q
Definition: av1_common_int.h:630
int y_dc_delta_q
Definition: av1_common_int.h:621
const qm_val_t * gqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:671
Params related to tiles.
Definition: av1_common_int.h:429
int uniform_spacing
Definition: av1_common_int.h:445
int max_width_sb
Definition: av1_common_int.h:432
int log2_rows
Definition: av1_common_int.h:452
int min_log2_rows
Definition: av1_common_int.h:464
int width
Definition: av1_common_int.h:453
int max_log2_rows
Definition: av1_common_int.h:472
int row_start_sb[MAX_TILE_ROWS+1]
Definition: av1_common_int.h:486
int cols
Definition: av1_common_int.h:430
int max_height_sb
Definition: av1_common_int.h:433
unsigned int large_scale
Definition: av1_common_int.h:490
unsigned int single_tile_decoding
Definition: av1_common_int.h:496
int max_log2_cols
Definition: av1_common_int.h:468
int log2_cols
Definition: av1_common_int.h:451
int min_log2
Definition: av1_common_int.h:476
int rows
Definition: av1_common_int.h:431
int min_inner_width
Definition: av1_common_int.h:438
int min_log2_cols
Definition: av1_common_int.h:460
int col_start_sb[MAX_TILE_COLS+1]
Definition: av1_common_int.h:481
int height
Definition: av1_common_int.h:454
Frame level features.
Definition: av1_common_int.h:360
InterpFilter interp_filter
Definition: av1_common_int.h:409
bool allow_ref_frame_mvs
Definition: av1_common_int.h:383
bool allow_warped_motion
Definition: av1_common_int.h:379
bool allow_screen_content_tools
Definition: av1_common_int.h:377
bool switchable_motion_mode
Definition: av1_common_int.h:407
TX_MODE tx_mode
Definition: av1_common_int.h:408
bool reduced_tx_set_used
Definition: av1_common_int.h:396
bool allow_intrabc
Definition: av1_common_int.h:378
int byte_alignment
Definition: av1_common_int.h:418
bool coded_lossless
Definition: av1_common_int.h:387
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context
Definition: av1_common_int.h:423
bool error_resilient_mode
Definition: av1_common_int.h:402
int primary_ref_frame
Definition: av1_common_int.h:414
bool disable_cdf_update
Definition: av1_common_int.h:364
bool allow_high_precision_mv
Definition: av1_common_int.h:369
bool cur_frame_force_integer_mv
Definition: av1_common_int.h:373
bool all_lossless
Definition: av1_common_int.h:391
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:222
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:228
Parameters related to Restoration Info.
Definition: restoration.h:246
External frame buffer.
Definition: aom_frame_buffer.h:40
Variables related to current coding block.
Definition: blockd.h:570
bool left_available
Definition: blockd.h:626
uint8_t * tx_type_map
Definition: blockd.h:666
int mb_to_bottom_edge
Definition: blockd.h:680
TXFM_CONTEXT * left_txfm_context
Definition: blockd.h:740
struct macroblockd_plane plane[3]
Definition: blockd.h:606
int mb_to_top_edge
Definition: blockd.h:679
int mb_to_right_edge
Definition: blockd.h:678
bool up_available
Definition: blockd.h:622
MB_MODE_INFO * above_mbmi
Definition: blockd.h:645
bool chroma_up_available
Definition: blockd.h:630
TXFM_CONTEXT * above_txfm_context
Definition: blockd.h:733
bool chroma_left_available
Definition: blockd.h:634
PARTITION_CONTEXT * above_partition_context
Definition: blockd.h:718
MB_MODE_INFO * chroma_left_mbmi
Definition: blockd.h:652
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition: blockd.h:747
int tx_type_map_stride
Definition: blockd.h:671
MB_MODE_INFO * chroma_above_mbmi
Definition: blockd.h:659
int mi_row
Definition: blockd.h:575
int mi_stride
Definition: blockd.h:582
bool is_last_vertical_rect
Definition: blockd.h:787
bool is_first_horizontal_rect
Definition: blockd.h:792
uint8_t width
Definition: blockd.h:765
struct aom_internal_error_info * error_info
Definition: blockd.h:838
CFL_CTX cfl
Definition: blockd.h:894
int lossless[8]
Definition: blockd.h:817
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition: blockd.h:710
ENTROPY_CONTEXT * above_entropy_context[3]
Definition: blockd.h:703
MB_MODE_INFO ** mi
Definition: blockd.h:617
uint8_t height
Definition: blockd.h:766
MB_MODE_INFO * left_mbmi
Definition: blockd.h:640
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition: blockd.h:725
bool is_chroma_ref
Definition: blockd.h:601
int mi_col
Definition: blockd.h:576
int mb_to_left_edge
Definition: blockd.h:677
YV12 frame buffer data structure.
Definition: yv12config.h:44